14 Mile Road Condition Assessment

Cheryl Porter, COO Water & Field Svcs Todd King, Field Services Director

Issues and Challenges

- Aging Infrastructure
- Large Installed Capital Base
- Too much capacity
- Maintain balance between
 - Efficiency lowest life cycle costs
 - Level of Service water is "always on"

Program Objectives

Risk Management

Budget Optimization

AGENDA

Inspection Overview

- Background
- Preparation
- Inspection

Results Overview

- Acoustic Data
- Electromagnetic Data
- Structural Evaluation

• Conclusions

- Conclusions
- Recommendations

Inspection Overview

14 Mile Road

BACKGROUND

• October 2017 Break (WS-196)

- Impacted 300,000 customers
- Likely a power trip which initiated event
- Evidence of hydrogen embrittlement

PREPARATION

• Fall 2018

• Wachs valve & appurtenance inspection

• January 2019

- Test shutdowns
- Flow testing
- Segment 1 failed to flow as planned

• February 2019

- Wachs valve inspection
 - 100% operation when possible to determine valve position

• March 2019

• Test shutdowns and flow testing successful

INSPECTION

Results Overview

14 Mile Road

Acoustic Monitoring

- Rolls along bottom of main
 Has a "sonar" function to detect air voids
- 3) "Listens" to detect leaks

ACOUSTIC RESULTS

Critical Findings of SmartBall Inspection				
Acoustic Event	Leak Type	Size of Leak	Distance from Nearest Tracking Location	Suspected Source of Leak
Segment 1				
1-1	Feature-Related	Small	17.2 feet U/S of 54" BFV (Station 153+08.50)	24-inch valve on outlet serving FT-09 (Station 152+92.10)
1-2	Feature Re te l	and	329 2 feet D/S of 54" BEV	Entrance MH (Station 0+16.10)
2-1	Feature-Related	Small	296.8 feet D/S of 30" GV (Station 128+25.39)	Blow-off (Station 0+30)

Electromagnetic Frequency (EMF)

- 1) Neutrally buoyant, free floats through pipe
- 2) Emits EMF waves
- 3) Records EMF waves
- 4) Used to interpret number of wire breaks

ELECTROMAGNETIC RESULTS

• GIS Pipe List

- Shows individual pipes and wire break count
 - Light blue no wire breaks detected
 - Green 5 wire breaks reported
 - Yellow 10 to 25 wire breaks reported
 - Red 30+ wire breaks reported
 - Purple Distressed pipe "D"

ELECTROMAGNETIC RESULTS

Segments 1 & 2: All Contracts

NOTE:

1) "D" Pipes refer to distress reported across entire length of the pipe. Due to the complexity of the analysis for these types of pipes, the Broken Wire Wraps (BWW) quantification is not available.

Conclusions

14 Mile Road

PURE CONCLUSIONS

Inspection

- Total of 3 leaks detected and repaired
- Total of 100 pipes detected with distress, ranging from 5 40 BWW, 12 pipes with Distress across length of pipe

Structural Analysis

- AWWA C301 was satisfied for all five (5) of the pipe classes analyzed
- AWWA C304 was satisfied for WS-167 and WS-332 Class A
- AWWA C304 indicated that Serviceability Limiting Criteria was not satisfied for WS-196 Classes A and B, and WS-332 Class B
- FEA evaluation indicated:
 - For Operating Pressure:
 - 8 pipes exceeded the yield limit
 - 0 pipes exceeded the strength limit
 - For Operating plus Surge Pressure:
 - 21 pipes exceeded the yield limit
 - 11 pipes exceeded the strength limit

PURE RECOMMENDATIONS

Recommendations

- Repair or replace 21 pipes which were found to exceed the yield limit at surge + operating pressure
- Install AFO monitoring system to monitor prestressing wires
- If replacements are made, provide forensics of pipe for updated analysis
- Install continuous high-frequency pressure monitoring

Remaining Scope

• Acoustic Fiber Optics (AFO) Monitoring

- Taps and conduit for AFO cable at in-line valves and unfavorable tees
- AFO cable installation
- DAQ

Lessons Learned From the Pilot

- 96+ % of Pilot piping has no sign of wire breaks
- Very labor intensive for staff and member partner staff to prep and conduct acoustic and EMF assessments
- Uncertainty remains in interpretation of risk and probability of failure
- GLWA and Member Partners have developed emergency connection protocols
- Due to uncertainty, recommendation is to wait for completion of Haggerty loop prior to repairing or replacing pipe

Going Forward

- Recommend installing permanent Acoustic Fiber Optic monitoring
- Haggerty Loop project is progressing on schedule
 - Bid Spring 2021
 - Start of Construction July 2021
 - Completion July 2023
- Recommend addressing distressed pipes after completion of Haggerty Loop to mitigate risk to Member Partners

