

+PROCESS

# Contents

| $\overline{}$ | ID A+ A C | Planco  |        |           |               |                                       |       | 1_1         |
|---------------|-----------|---------|--------|-----------|---------------|---------------------------------------|-------|-------------|
| ı             | IF ALA C  | iow     |        |           |               |                                       |       | .1-         |
| ١.            | CECTIC    | NI 4 C  |        |           |               | ER AUTHO                              | NDITV | .1-4        |
|               |           |         |        |           |               |                                       |       |             |
|               | 1.1.      | Powe    | rs of  | tne Aut   | nority        |                                       |       | 1-3         |
|               | 1.2.      |         |        |           |               | embers                                |       |             |
|               | 1.3.      |         |        | Leaders   | ship Lea      | am                                    |       | <b> -</b> 4 |
|               | 1.4.      | Service |        |           |               | Member                                |       |             |
|               |           | Relati  | ionsh  | ips       |               |                                       |       | <b> -</b> 2 |
|               |           |         |        |           |               |                                       |       |             |
|               | 2.1.      |         |        |           |               | grams                                 |       | 1-5         |
|               | SECTIO    |         |        |           |               | PROJECTS                              |       |             |
|               |           | ((      | GRE/   | ATER T    | THAN \$3      | 30M)                                  |       | .1-6        |
|               | 3.1.      | Water   | r      |           |               |                                       |       | 1-6         |
|               | 3.2.      |         |        |           |               |                                       |       | 1-6         |
|               | SECTIO    | N 4 L   | .ARG   | EST 20    | 21 PRC        | JECTED S                              | PEND  |             |
|               |           | ((      | GRE/   | ATER T    | THAN \$5      | 5M)                                   |       | .1-7        |
|               | 4.1.      | Water   | r      |           |               |                                       |       | 1-7         |
|               | 4.2.      |         |        |           |               |                                       |       |             |
| ΙΙ.           | Devel     |         |        |           |               |                                       |       |             |
|               | SECTIO    | )N 1 A  | PPR    | OVAL I    | PROCE         | SS                                    |       | <br>  -1    |
|               | SECTIO    | N 2 C   | :Al Fi | NDAR      |               |                                       |       | <br>II-2    |
|               |           |         |        |           |               | /ALUATION                             |       | 2           |
|               | OLOTIC    |         |        |           |               |                                       |       | 11-2        |
|               | 3.1.      | Project | ot Dri | aritizati | -1 <b>1</b> 1 |                                       |       | 11-2        |
|               | 3.1.      |         |        |           |               |                                       |       |             |
|               | 3.3.      |         |        |           |               | · · · · · · · · · · · · · · · · · · · |       |             |
|               |           |         |        |           |               |                                       |       |             |
|               |           |         |        |           |               |                                       |       |             |
|               | 4.1.      |         |        |           |               | 1                                     |       |             |
|               | 4.2.      |         |        |           |               |                                       |       |             |
|               | 4.3.      | CIP I   | ypes   |           |               |                                       |       | 11-5        |
|               |           |         |        |           |               |                                       |       |             |
|               | 5.1.      |         |        |           |               | ct Detail                             |       |             |
|               | 5.2.      |         |        |           |               | es & Numbe                            |       |             |
|               | 5.3.      |         |        |           |               |                                       |       |             |
|               | 5.4.      | Progra  | ams.   |           |               |                                       |       | 11-6        |
|               |           |         |        |           |               |                                       |       |             |

| 5.5.         | Navigation                                  | 11 0   |
|--------------|---------------------------------------------|--------|
| 5.6.         | CIP and Business Unit Overview              |        |
| 5.0.<br>5.7. |                                             |        |
| _            | CIP Database                                | . 11-8 |
| 5.8.         | Project Risk Matrix                         | . 11-8 |
| 5.9.         | Cost Estimation Classifications             | 1-10   |
| 5.10.        | Innovation, Master Plan Right-Sizing,       |        |
|              | Redundancy/Reliability & NE WTP Related     |        |
|              | Projects                                    |        |
|              | Program Projects                            |        |
|              | Project Year-to-Year ComparisonI            |        |
| 5.13.        | Project Phase ScheduleI                     | I-11   |
|              | N 6 2020 CIP CHANGESI                       |        |
|              | inancial Considerations                     |        |
|              | N 1 INTRODUCTION                            | III-1  |
| SECTIO       | N 2 SUMMARY CIP FINANCIAL PLAN              |        |
|              | REVIEW AND ANALYSIS                         | 111-2  |
| 2.1.         | Cost Pool Responsibility                    | III-3  |
| 2.2.         | CIP Funding Based on Estimated Useful Life  | -4     |
| 2.3.         | Project Status Analysis                     | III-6  |
| 2.4.         | Project Category Analysis                   | 111-7  |
| IV. CIP S    | ummary<br>NN 1 PROJECT UPDATES              | IV-1   |
| SECTIO       | N 1 PROJECT UPDATES                         | IV-1   |
| SECTIO       | N 2 HIGHLIGHTS                              | IV-2   |
| 2.1.         | Possible Innovative Projects                | IV-2   |
| 2.2.         | Master Plan Right-Sizing Projects           |        |
| 2.3.         | Redundancy & Reliability Projects           |        |
| 2.4.         | Northeast Water Treatment Plant Repurposing |        |
|              | Related Projects                            | IV-6   |
| 2.5.         | Projects by Jurisdiction                    | IV-6   |
| SECTIO       | N 3 5-YEÁR CIP SUMMARY TABLES               |        |
|              | ct Prioritization and Risk Evaluation       |        |
|              | N 2 PROJECT MANAGER CRITERIA                |        |
| 5_5.10       | SCORES: WATER                               | V-4    |
| SECTIO       | N 3 PROJECT MANAGER CRITERIA                | -      |
| 5_5.10       | SCORES: WATER                               | V-!    |
|              |                                             | - •    |

**V** PRIORITIZATION

| SECTIO     | N 4 PROJECT MANAGER CRITERIA<br>SCORES: WASTEWATER | V     |
|------------|----------------------------------------------------|-------|
| SECTIO     | N 5 PROJECT MANAGER CRITERIA                       | V-0   |
|            | SCORES: WASTEWATER                                 | V-7   |
| SECTIO     | N 6 BCE PRIORITIZATION SCHEDULE                    |       |
|            | ALIGNMENT                                          | V-8   |
| VI. Projec | cts by Category                                    | VI-1  |
| SECTIO     | N 1 WATER                                          | VI-1  |
| 1.1.       | Water Treatment Plants & Facilities                | VI-11 |
| 1.2.       | Field Services                                     | VI-18 |
| 1.3.       | Systems Control Center                             | VI-20 |
| 1.4.       | Water Quality                                      | VI-34 |
| 1.5.       | Metering                                           |       |
| 1.6.       | General Purpose                                    | VI-34 |
| 1.7.       | Programs                                           | VI-34 |
| SECTIO     | N 2 WASTEWATER                                     |       |
| 2.1.       | Water Resources Recovery Facility                  | VI-40 |
| 2.2.       | Field Services                                     | VI-50 |
| 2.3.       | Systems Control Center                             | VI-57 |
| 2.4.       | Metering                                           | VI-66 |
| 2.5.       | General Purpose                                    |       |
|            |                                                    |       |

| 2.6. Programs                             | VI-66               |
|-------------------------------------------|---------------------|
| SECTION 3 CENTRALIZED S                   | SERVICESVI-67       |
| 3.1. Information Technolog                | gyVI-67             |
| 3.2. Fleet                                | VI-68               |
|                                           | VI-69               |
| 3.4. Security                             | VI-69               |
| <ol><li>3.5. Energy Management.</li></ol> | VI-69               |
| 3.6. Engineering                          | VI-70               |
|                                           | VI-70               |
| 3.8. Programs                             | VI-70               |
| VII. Ten-Year Outlook                     |                     |
| SECTION 1 10-YEAR WATER                   |                     |
| SECTION 2 10-YEAR WASTI                   | EWATER OUTLOOKVII-7 |
| VIII. Project Descriptions                |                     |
| SECTION 1 WATER                           | VIII-1              |
| SECTION 2 WASTEWATER.                     |                     |
| SECTION 3 CENTRALIZED S                   | SERVICESVIII-197    |
| IX. Glossary                              | IX-1                |
| X. Appendices                             |                     |



CIP Overview – GLWA's Capital Improvement Plan (CIP) supports the continuation of major capital asset investments in programs and projects that will upgrade the Authority's aging water and wastewater system infrastructure, as well as the overarching centralized service infrastructure that supports both systems. The CIP is a five-year plan which identifies capital projects and programs and their respective financing options. Annually, this plan is updated to reflect changing system needs, priorities and funding opportunities.

Plan Spending Summary

5-Year Total **~\$1.7 billion** 5-Year Annual Average **~** \$335 million

10-Year Total ~ **\$3.2 billion** 10-Year Annual Average ~ \$324 million

#### 5 Year Plan Project Totals

Total number of projects **119**Total number of new projects **19**Total number of closed projects **15** 

5-Year Total of Water Capital Projects

Increased by 10% – Ongoing efforts to achieve maximum reliability and resiliency of the water system drove the increase in the planned spend. Considerations for minimizing capital expenditures without compromising our best in class water services were balanced during the CIP development process. This resulted in a \$83.1 million increase in last year's Board approved plan. The major contributors to this increase stem from additional condition assessment information, scope increase and the addition of six new water projects.

5-Year Total of Wastewater Capital Projects Increased by 1% – As with the water plan, ongoing efforts to achieve maximum reliability and resiliency of the wastewater system drove the increase in the planned spend. The CIP process balanced considerations for minimizing capital expenditures without compromising our best-inclass sewer services. This resulted in a \$5.8 million to last year's Board approved plan.

GLWA CIP At A Glance Capital Improvement Plan FY 2021 through FY 2025 Proposed as of January 10, 2020

**Water System Cost Allocation** 

|               | 5-Yr Total | % of 5- Year<br>Total |
|---------------|------------|-----------------------|
| CTA           | \$ 928,961 | 99.3%                 |
| Suburban Only | \$ 6,450   | 0.7%                  |
| Sub Total     | \$ 935,411 | 100.0%                |

**Wastewater System Cost Allocation** 

|           | 5-Yr Total | % of 5- Year<br>Total |
|-----------|------------|-----------------------|
| СТА       | \$ 667,455 | 90.3%                 |
| CSO 83/17 | \$ 71,980  | 9.7%                  |
| Sub Total | \$ 739,435 | 100.0%                |

#### Typical CIP Development Schedule

The schedule below is for planning purposes. It reflects the past actual dates as well as projected future dates and is subject to change. Specific approval dates and coordination with the GLWA Board of Directors is necessary to identify key milestones leading up to the ultimate approval of the 2021-2025 CIP.

| Date       | Description                   |
|------------|-------------------------------|
| June       | Open CIP for annual updates   |
| August     | BCEs Due                      |
| Sept - Oct | Internal meetings             |
| October    | Preliminary Draft No. 1       |
| November   | Questions/Comments Due        |
| December   | Preliminary Draft No.2        |
| January    | Presented to Full Board       |
| February   | Capital Planning Cmtee Review |
| Varies     | Board Approval                |
| July 1     | Effective Date Updated Plan   |



**Questions?** Contact the Office of the Director of CIP at <a href="mailto:ali.khraizat@glwater.org">ali.khraizat@glwater.org</a>

## I. OVERVIEW

#### SECTION 1 GREAT LAKES WATER AUTHORITY

The Great Lakes Water Authority (GLWA) was incorporated by the City of Detroit and the Counties of Macomb. Oakland and Wayne on November 26, 2014 pursuant to Act 233, Public Acts of Michigan, 1955, as amended. At the time of GLWA's incorporation, the City, through its Detroit Water and Sewerage Department (DWSD), was providing water supply services and sewage disposal services within and outside of the City of Detroit. On June 12, 2015, the City and GLWA executed a regional water system Lease, a regional sewage disposal system lease and a water and sewer services agreement, and as of December 1, 2015, the City and GLWA executed a shared services agreement. The foregoing agreements became effective on January 1, 2016, at which time GLWA, pursuant to the Lease, became responsible for the debt obligations of the City relating to the Water System, including the payment of all DWSD Water Bonds, through the substitution of GLWA for the City as the sole obligor on the DWSD Water Bonds, the assignment to GLWA of all of the revenues of the Water System, and the assumption by GLWA of the DWSD Water Bonds.

The Authority operates the regional water system and the regional sewer system (each as defined herein) for Southeast Michigan pursuant to the leases and the Water and Sewer Services Agreement. The governance structure of the Authority gives suburban water and sewer customers a substantial collaborative role in the direction of one of largest water and wastewater utilities in the nation, while also providing the City's local systems the benefits of the Authority's regional strengths. While GLWA manages and controls all regional water and wastewater wholesale services, the City and the suburban customer communities retain control of local water and sewer services within their respective borders. The City also acts as agent of GLWA with respect to setting, billing, collecting and enforcing local retail charges. Prior to January 1, 2016, DWSD's financial

activities were largely governed by a series of federal court orders designed to separate the management of the regional water and sewer enterprises from local City control and to ensure environmental compliance. In contrast, GLWA is a legally independent, regional authority created pursuant to State law, governed by its own independent Board of Directors and primarily overseen, as to environmental matters, by the Environmental Great Lakes & Energy (EGLE), as are all water and sewer service providers in the state, and the federal Environmental Protection Agency (EPA).

The new Authority has adopted an unwavering commitment to its customer communities, known as "One Water," with a strong mission statement of customer collaboration and engagement:

"Through regional collaboration, GLWA strives to be the provider of choice dedicated to efficiently delivering the nation's best water and sewer service in partnership with our customers."

In open partnership with its customers, GLWA is focused on innovation in its business practices, with a commitment to providing the highest quality product and services to current and future generations.

The regional water system has a long history of providing reliable service and water quality with the Great Lakes as its source and five water treatment plants, with capacity well in excess of current and projected demands. In light of this capacity, GLWA has undertaken plans to market water services to potential new wholesale customers, as well as to right-size its facilities for financial and operational optimization of the regional water system.



loverview

# PROCESS

III FINANCE

IV CIP SUMMARY V PRIORITIZATION VI PROJECTS
BY CATEGORY

VII TEN-YEAR OUTLOOK VIII PROJECT DESCRIPTIONS

IX GLOSSARY

#### 1.1. Powers of the Authority

GLWA is a public body corporate organized pursuant to the provisions of Act 233. In addition to this statutory authority, the governance for the Authority is found in its Articles of Incorporation, By-Laws, policies, and ordinances including but not limited to its bond ordinances. The Authority has both express powers and implied powers necessary to carry out its powers, duties, and responsibilities. GLWA's express powers include the following:

The Authority is empowered through its Board of Directors to provide wholesale water and wastewater service to the service area. The six-member GLWA Board has the authority to execute contracts, set policy for the Authority, set service charges and set the revenue requirement for the customers.

The GLWA Board is required to appoint an Audit Committee to "review the reports related to the financial condition, operations, performance and management of the Authority" on a regular basis. Certain actions by the GLWA Board require the affirmative vote of at least five of its members, including, but not limited to, setting charges for water and sewer services, annual operating budgets, capital improvement programs, issuance of debt and any modification of the Lease.

The Authority shall formally adopt a two-year operating budget, consistent with Section 5 of the Articles of Incorporation. The two-year operating budget shall require the affirmative vote of five members.

The Authority has the ability to enter into water supply and sewage disposal contracts and may establish and fix a schedule of fees and other charges for its services.

#### 1.2. Governance and Board Members

The GLWA Board of Directors (GLWA Board) is comprised of six voting members. Two members are residents of the City of Detroit

and are appointed by the Mayor of the City of Detroit. The Counties of Macomb, Oakland, and Wayne each appoint one member who is a resident of the County from which appointed and the Governor of the State of Michigan appoints one member who is a resident of an area served by the Authority outside of the Counties. All members of the GLWA Board must have at least seven years of experience in a regulated industry, a utility, engineering, finance, accounting or law. After the initial term specified in the Articles of Incorporation, each GLWA Board member is appointed for a four-year term and serves at the pleasure of the appointing authority.

In order to more efficiently oversee the Authority's operations, the GLWA Board has adopted a committee structure. Four committees have been established: (i) Audit, (ii) Capital Improvement Planning, (iii) Operations and Resources and (iv) Legal.

The GLWA Board currently consists of:

- Abe Munfakh, P.E., GLWA Board Chair; Representative for Wayne County
- Dr. Beverly Walker-Griffea, Ph.D., GLWA Board Vice-Chair; Representative for the State of Michigan
- Jaye Quadrozzi, Board Secretary; Representative for Oakland County
- Brian Baker, Representative for Macomb County
- Freman Hendrix, Representative for the City of Detroit
- Gary A. Brown, Representative for the City of Detroit

The GLWA Capital Improvement Planning committee provides significant input, direction and evaluation of the 2021-2025 CIP. Current members of the CIP committee include:

- Abe Munfakh, P.E.
- Jaye Quadrozzi



I CIP DEVELOPMENT
+ PROCESS

/ELOPMENT III FINANCE

IV CIP SUMMARY

V PRIORITIZATION

VI PROJECTS BY CATEGORY VII TEN-YEAR OUTLOOK VIII PROJECT DESCRIPTIONS

IX GLOSSARY

#### 1.3. Executive Leadership Team

GLWA's Executive Leadership Team has operated the Water System since 2012, and is continuing to optimize the organization through innovative job designs, lean business practices and the greater use of technology. These organizational optimization initiatives have already resulted in performance improvements in all aspects of Water and Wastewater System operations, from environmental compliance to member partner satisfaction, and have materially improved the Water System's financial metrics and results. GLWA continues on its path of performance improvement with a new focus on its role in the economic success and the public health and safety of the region it serves.

The GLWA Executive Leadership Team is committed to building upon the history of improved performance of the Water System and the Sewer System that began in 2012. GLWA key personnel are:

- Sue F. McCormick, Chief Executive Officer
- William M. Wolfson, Chief Administrative and Compliance Officer
- Nicolette N. Bateson, CPA, Chief Financial Officer/Treasurer, Financial Services
- Cheryl Porter, Chief Operating Officer, Water & Field Services
- Navid Mehram, P.E., Chief Operating Officer, Wastewater Services
- Terri Tabor Conerway, Chief Organizational Development Officer
- Suzanne R. Coffey, P.E., Chief Planning Officer
- Michelle A. Zdrodowski, Chief Public Affairs Officer
- Jeffrey E. Small, Chief Information Officer
- W. Barnett Jones, Chief Security and Integrity Officer
- Randal M. Brown, General Counsel

#### 1.4. Service Area and Member Partner Relationships

The Authority's Water System is one of the largest in the United States, both in terms of water produced and population served. The Water System currently serves an area of 1,689 square miles located in eight Michigan counties and an estimated population of 3.8 million people. This includes 88 Member Partners across 112 communities. In addition, GLWA serves Detroit via the Water and Sewer Services Agreement and Genesee County via a Reciprocal Backup Agreement.

#### SECTION 2 CIP STRATEGY

GLWA's Capital Improvement Plan (CIP) supports the continuation of major capital asset investment in programs and projects that will upgrade the Authority's aging water and wastewater system infrastructure, as well as the overarching centralized service infrastructure that supports both systems. The CIP is a five-year plan which identifies capital projects and programs and their respective financing options. Annually, this plan is updated to reflect changing system needs, priorities and funding opportunities.

"At GLWA the capital replacement strategy that we are striving for is to increase resiliency of water and wastewater systems, adhere to longterm planning document recommendations, active solicitation of stakeholder input and to be the best-in-class planning and execution"

Projects and programs established in the CIP are identified and recommended from many different sources. Several projects are necessary to meet permit and regulatory requirements, while others have been identified in master plans and condition or need assessments. The latter of which make up the primary sources of



# PROCESS

III FINANCE

IV CIP SUMMARY

V PRIORITIZATION

VI PROJECTS BY CATEGORY VII TEN-YEAR OUTLOOK VIII PROJECT DESCRIPTIONS

IX GLOSSARY

projects within the CIP. In addition, other projects and programs are brought forward by operations and maintenance personnel tasked with continually providing a high level of service and by the engagement of our stakeholders – in particular, an engaged member partner community.

Based upon their long-term nature toward achieving a strategy, master plan capital recommendations make up a significant number of the projects. GLWA's Comprehensive Water Master Plan was completed in 2015 is a twenty-year planning tool that addresses optimization of an aging water system by recognizing that there is excess capacity from decreasing usage and a stable population while never compromising quality. GLWA's Comprehensive Regional Wastewater Master Plan will replace the existing 2003 wastewater master plan, it is expected to be complete by the end of this calendar year. This master plan focuses on the new dynamic of a regional authority to provide regional collaboration and planning to minimize capital expenditures while exceeding levels of service.

This CIP should be considered a planning document – it is a dynamic and evolving plan that requires continual review and modification during the course of the year. The estimates indicated in the early years of the report are likely more precise than those in the later years because anticipated projects in the early years are typically better defined by studies or scoped by design than projects conceptual in nature in the out years of the

plan. The project descriptions and summaries represent brief synopses of the entire project scope; these descriptions are generally more precise for ongoing active projects than for newly planned projects, where specific project activities may have yet to be determined.

Based upon the execution of programs and projects identified in the CIP, existing levels of service currently provided will be met or exceeded.

Copies of this CIP and past CIPs are available on GLWA's website at <a href="https://www.glwater.org/cip">https://www.glwater.org/cip</a>.

#### 2.1. Funded Portion of the Programs

This plan spans a 5-year period from fiscal year 2021 through fiscal year 2025. The CIP review process also includes an extensive review of the total project, or "lifetime" budget, which reflects historical spending prior to, during, and beyond the current 5-year period. The goal of the Authority's capital financing strategy is to align capital project financing sources with multiple goals including: (a) recovering the costs of capital investment over the useful lives of the capital assets; (b) minimizing the impact of the capital programs on water and sewage revenue requirements; and (c) protecting and enhancing the Authority's financial position. The potential funding source identified for each project is subject to change based upon the systems need and financial resources available at the time.

## SECTION 3 Largest Dollar Projects (greater than \$30M)

The Water and Wastewater projects with the largest projected spend for the FY2021-2025 CIP are listed below. These projects are budgeted for greater than \$30 Million over the FY2021-2025 time period. There are nine (9) projects in the Water category and nine (9) projects in the Wastewater category.

#### 3.1. Water

Table I-1. Water Projects with 2021-2025 CIP Total Greater than \$30M

|        | Table 1 1. Water 1 Tojest                                                                             | Lifetime<br>Actual<br>Thru<br>FY19 |       | Projected Expenditures |        |        |        |        |        |                          |                  |  |
|--------|-------------------------------------------------------------------------------------------------------|------------------------------------|-------|------------------------|--------|--------|--------|--------|--------|--------------------------|------------------|--|
| CIP#   | Project Title                                                                                         |                                    | FY20  | FY21                   | FY22   | FY23   | FY24   | FY25   | FY26+  | 2021-<br>25 CIP<br>Total | Project<br>Total |  |
| 122003 | Water Works Park to Northeast Transmission Main                                                       | 2,611                              | 1,169 | 11,703                 | 18,407 | 18,678 | 18,170 | 20,839 | 65,949 | 87,797                   | 157,526          |  |
| 122004 | 96-inch Water Transmission Main Relocation and Isolation Valve Installations                          | 1,790                              | 2,549 | 5,267                  | 15,765 | 19,937 | 19,797 | 19,797 | 59,969 | 80,563                   | 144,871          |  |
| 114002 | Springwells Water Treatment Plant, Low-Lift and High-Lift Pumping Station Improvements                | 2,080                              | 3,039 | 7,113                  | 12,893 | 18,905 | 18,690 | 19,175 | 92,940 | 76,776                   | 174,835          |  |
| 115001 | Water Works Park Water Treatment Plant Yard Piping,<br>Valves and Venturi Meters Replacement          | 1,760                              | 251   | 5,462                  | 13,349 | 21,478 | 20,883 | 8,836  | 0      | 70,008                   | 72,019           |  |
| 122013 | 14 Mile Transmission Main Loop                                                                        | 638                                | 3,762 | 1,194                  | 17,085 | 17,085 | 17,085 | 17,085 | 7      | 69,534                   | 73,941           |  |
| 116002 | Pennsylvania and Springwells Raw Water Supply Tunnel Improvements                                     | 10,200                             | 653   | 14,138                 | 21,917 | 8,810  | 5,527  | 0      | 0      | 50,392                   | 61,245           |  |
| 111001 | Lake Huron Water Treatment Plant, Low-Lift, High Lift and Filter Backwash Pumping System Improvements | 14                                 | 1,236 | 1,636                  | 1,749  | 13,725 | 12,768 | 12,841 | 11,121 | 42,719                   | 55,090           |  |
| 132010 | West Service Center Pumping Station - Reservoir,<br>Reservoir Pumping, and Division Valve Upgrades    | 296                                | 663   | 4,323                  | 12,209 | 11,853 | 8,361  | 0      | 0      | 36,746                   | 37,705           |  |
| 170800 | System-Wide Finished Water Reservoir Inspection, Design and Rehabilitation                            | 457                                | 2,160 | 6,087                  | 6,087  | 6,087  | 4,100  | 11,366 | 22,732 | 33,727                   | 59,076           |  |

#### 3.2. Wastewater

Table I-2. Wastewater Projects with 2021-2025 CIP Total Greater than \$30M

|        | Table 1-2. Wastewater 1 Tojects with 2021-2025 On Total Oreater than \$50m |            |        |                        |        |        |        |        |         |                          |                  |  |
|--------|----------------------------------------------------------------------------|------------|--------|------------------------|--------|--------|--------|--------|---------|--------------------------|------------------|--|
|        |                                                                            | <b>a</b> . |        | Projected Expenditures |        |        |        |        |         |                          |                  |  |
| CIP#   | Project Title                                                              |            | FY20   | FY21                   | FY22   | FY23   | FY24   | FY25   | FY26+   | 2021-<br>25 CIP<br>Total | Project<br>Total |  |
| 260200 | Sewer and Interceptor Rehabilitation Program                               | 18,637     | 19,029 | 12,976                 | 36,047 | 24,872 | 15,495 | 14,347 | 13,240  | 103,737                  | 154,643          |  |
| 212008 | WRRF Aeration Improvements 1 and 2                                         | 0          | 183    | 4,612                  | 7,977  | 7,619  | 40,638 | 15,336 | 5,149   | 76,182                   | 81,514           |  |
| 232002 | Freud & Conner Creek Pump Station Improvements                             | 5,631      | 7,364  | 6,445                  | 57     | 9,898  | 23,830 | 30,803 | 138,071 | 71,033                   | 222,099          |  |

|        |                                                                                  | ifetime<br>Actual<br>Thru<br>FY19 |        | Projected Expenditures |        |        |        |        |        |                          |                  |  |
|--------|----------------------------------------------------------------------------------|-----------------------------------|--------|------------------------|--------|--------|--------|--------|--------|--------------------------|------------------|--|
| CIP#   | Project Title                                                                    |                                   | FY20   | FY21                   | FY22   | FY23   | FY24   | FY25   | FY26+  | 2021-<br>25 CIP<br>Total | Project<br>Total |  |
| 211007 | WRRF PS #2 Bar Racks Replacements and Grit Collection<br>System Improvements     | 1                                 | 256    | 3,098                  | 7,546  | 2,120  | 20,899 | 34,034 | 8,642  | 67,697                   | 76,596           |  |
| 222002 | Detroit River Interceptor (DRI) Evaluation and Rehabilitation                    | 10,592                            | 16,199 | 23,634                 | 9,786  | 1,465  | 10,014 | 9,986  | 0      | 54,885                   | 81,676           |  |
| 260600 | CSO FACILITIES IMPROVEMENT PROGRAM                                               | 6,742                             | 7,555  | 7,492                  | 10,289 | 10,576 | 4,759  | 20,280 | 85,250 | 53,396                   | 152,943          |  |
| 260500 | CSO Outfall Rehabilitation                                                       | 3,331                             | 4,802  | 11,706                 | 9,156  | 11,995 | 10,976 | 8,243  | 4,197  | 52,076                   | 64,406           |  |
| 222004 | Sewer System Infrastructure and Pumping Stations Improvements                    | 4                                 | 1,459  | 2,701                  | 5,433  | 16,434 | 9,864  | 3,279  | 1,952  | 37,711                   | 41,126           |  |
| 222001 | Oakwood District Intercommunity Relief Sewer<br>Modification at Oakwood District | 0                                 | 0      | 975                    | 3,128  | 3,371  | 11,234 | 13,439 | 21,365 | 32,147                   | 53,512           |  |

# SECTION 4 Largest 2021 Projected Spend (Greater than \$5M)

The Water and Wastewater projects with the largest projected spend for 2021 are listed below. These projects are budgeted for greater than \$5 Million in FY 2021. There are eleven (11) projects in the Water category and seven (7) projects in the Wastewater category.

#### 4.1. Water

Table I-3. Water Projects with 2021 Projected Spend Greater than \$5M. (Thousands of dollars)

|        | ·                                                                                                           | Lifetime<br>Actual<br>Thru<br>FY19 |       |        |        | P      | rojected E | xpenditu | res    |                          |                  |
|--------|-------------------------------------------------------------------------------------------------------------|------------------------------------|-------|--------|--------|--------|------------|----------|--------|--------------------------|------------------|
| CIP#   | Project Title                                                                                               |                                    | FY20  | FY21   | FY22   | FY23   | FY24       | FY25     | FY26+  | 2021-<br>25 CIP<br>Total | Project<br>Total |
| 116002 | Pennsylvania and Springwells Raw Water Supply<br>Tunnel Improvements                                        | 10,200                             | 653   | 14,138 | 21,917 | 8,810  | 5,527      | 0        | 0      | 50,392                   | 61,245           |
| 122005 | Schoolcraft Road Water Transmission Main                                                                    | 141                                | 3,342 | 13,141 | 1,482  | 0      | 0          | 0        | 0      | 14,623                   | 18,106           |
| 122003 | Water Works Park to Northeast Transmission Main                                                             | 2,611                              | 1,169 | 11,703 | 18,407 | 18,678 | 18,170     | 20,839   | 65,949 | 87,797                   | 157,526          |
| 114008 | Springwells Water Treatment Plant 1930<br>Sedimentation Basin Sluice Gates, Guides & Hoists<br>Improvements | 178                                | 3,386 | 10,327 | 331    | 19     | 0          | 0        | 0      | 10,677                   | 14,241           |
| 122006 | Wick Road Water Transmission Main                                                                           | 420                                | 6,163 | 9,975  | 5,780  | 0      | 0          | 0        | 0      | 15,755                   | 22,338           |
| 114002 | Springwells Water Treatment Plant, Low-Lift and High-Lift Pumping Station Improvements                      | 2,080                              | 3,039 | 7,113  | 12,893 | 18,905 | 18,690     | 19,175   | 92,940 | 76,776                   | 174,835          |
| 114011 | Springwells Water Treatment Plant Steam,<br>Condensate Return, and Compressed Air Piping<br>Improvements    | 2,373                              | 6,948 | 6,932  | 6,932  | 713    | 0          | 0        | 0      | 14,577                   | 23,898           |





# PROCESS

III FINANCE

IV CIP SUMMARY

V PRIORITIZATION

VI PROJECTS BY CATEGORY VII TEN-YEAR OUTLOOK VIII PROJECT DESCRIPTIONS

IX GLOSSARY

|        |                                                                                              | Lifetime<br>Actual<br>Thru<br>FY19 |       | Projected Expenditures |        |        |        |        |        |                          |                  |  |  |
|--------|----------------------------------------------------------------------------------------------|------------------------------------|-------|------------------------|--------|--------|--------|--------|--------|--------------------------|------------------|--|--|
| CIP#   | Project Title                                                                                |                                    | FY20  | FY21                   | FY22   | FY23   | FY24   | FY25   | FY26+  | 2021-<br>25 CIP<br>Total | Project<br>Total |  |  |
| 170800 | System-Wide Finished Water Reservoir Inspection,<br>Design and Rehabilitation                | 457                                | 2,160 | 6,087                  | 6,087  | 6,087  | 4,100  | 11,366 | 22,732 | 33,727                   | 59,076           |  |  |
| 115001 | Water Works Park Water Treatment Plant Yard<br>Piping, Valves and Venturi Meters Replacement | 1,760                              | 251   | 5,462                  | 13,349 | 21,478 | 20,883 | 8,836  | 0      | 70,008                   | 72,019           |  |  |
| 170300 | Water Treatment Plant Automation Program                                                     | 1,658                              | 3,208 | 5,440                  | 2,943  | 1,211  | 3,117  | 1,151  | 0      | 13,862                   | 18,728           |  |  |
| 122004 | 96-inch Water Transmission Main Relocation and Isolation Valve Installations                 | 1,790                              | 2,549 | 5,267                  | 15,765 | 19,937 | 19,797 | 19,797 | 59,969 | 80,563                   | 144,871          |  |  |

#### 4.2. Wastewater

Table I-4. Wastewater Projects with 2021 Projected Spend Greater than \$5M

|        |                                                                                       | <u> </u>                           |        | Projected Expenditures |        |        |        |        |         |                          |                  |
|--------|---------------------------------------------------------------------------------------|------------------------------------|--------|------------------------|--------|--------|--------|--------|---------|--------------------------|------------------|
| CIP#   | Project Title                                                                         | Lifetime<br>Actual<br>Thru<br>FY19 | FY20   | FY21                   | FY22   | FY23   | FY24   | FY25   | FY26+   | 2021-<br>25 CIP<br>Total | Project<br>Total |
| 222002 | Detroit River Interceptor (DRI) Evaluation and Rehabilitation                         | 10,592                             | 16,199 | 23,634                 | 9,786  | 1,465  | 10,014 | 9,986  | 0       | 54,885                   | 81,676           |
| 260200 | Sewer and Interceptor Rehabilitation Program                                          | 18,637                             | 19,029 | 12,976                 | 36,047 | 24,872 | 15,495 | 14,347 | 13,240  | 103,737                  | 154,643          |
| 260500 | CSO Outfall Rehabilitation                                                            | 3,331                              | 4,802  | 11,706                 | 9,156  | 11,995 | 10,976 | 8,243  | 4,197   | 52,076                   | 64,406           |
| 260600 | CSO FACILITIES IMPROVEMENT PROGRAM                                                    | 6,742                              | 7,555  | 7,492                  | 10,289 | 10,576 | 4,759  | 20,280 | 85,250  | 53,396                   | 152,943          |
| 232002 | Freud & Conner Creek Pump Station Improvements                                        | 5,631                              | 7,364  | 6,445                  | 57     | 9,898  | 23,830 | 30,803 | 138,071 | 71,033                   | 222,099          |
| 211008 | WRRF Rehabilitation of Ferric Chloride Feed System in PS-1 and Complex B Sludge Lines | 178                                | 1,239  | 5,522                  | 3,886  | 0      | 0      | 0      | 0       | 9,408                    | 10,825           |
| 232001 | Fairview Pumping Station - Replace Four Sanitary Pumps                                | 3,404                              | 27,552 | 5,336                  | 984    | 0      | 0      | 0      | 0       | 6,320                    | 37,276           |



#### SECTION 1 APPROVAL PROCESS

The CIP development and approval process begins with the approval of the previous year's CIP. The CIP process is a substantial level of effort that involves many team members throughout the Authority. Modifications, adjustments and improvements are being continuously considered and vetted internally and externally through various Member Outreach Work Groups. Projects and programs that ultimately get funded within the CIP are typically identified based upon master planning or condition/need assessment efforts. Projects also are identified internally based upon the needs of engineers, operations or maintenance staff. An internal effort to coordinate and prioritize all identified projects is conducted to ensure the appropriate projects are being funded in a prioritized manner.

The process typically begins in the summer of each year when modifications to the CIP itself, requested project information and process are developed. These changes are rolled out and project manager training on modifications to the CIP process and documentation occurs. At this time, an Authority-wide request for project proposals and the request for the completion of the Business Case Evaluation documentation is made to all business areas throughout the Authority. Business case evaluations from project managers are due to the Enterprise Capital Improvement Planning by late summer.

Typically, in September, the Water and Wastewater Review Committees will meet to score newly submitted CIP projects for the upcoming fiscal year. For this CIP, the projects and programs that are currently active have not been prioritized by these committees as they are currently underway, while the future planned projects that have not yet begun are only rescored if there have been significant changes to the condition of the assets in question or organizational priorities.

New this year, a new subcommittee for both Water and Wastewater was formed to meet after the scoring was completed to prioritize the project schedules with the needs of our operations and maintenance staff.

Project information related to new and substantially modified projects, as well as overall summary financial information are reviewed by the Executive Leadership Team (ELT). Following this review, a draft of the CIP is compiled typically in early fall. That draft report and back-up documentation are reviewed internally with the Asset Management and CIP work area team, several members of the ELT, Public Affairs, Chief Financial Officer/Treasurer (CFO) and the Authority's financial planning consultant. The Financial Services Area provides prior year actual expenses based upon unaudited financials.

With projects vetted internally, the draft CIP is presented and comments and feedback solicited from the CIP Member Outreach Work Group, the GLWA Capital Improvement Planning Committee and the Authority's Member Partner communities. Throughout this process all feedback, comments and suggestions are welcomed. Based upon member and Board feedback, the CIP is modified and a second version of the plan is released with roll-out to members and the Board through similar avenues. Following this release, it is expected that the CIP approval process coincides with the overall budget development and approval process.

#### SECTION 2 CALENDAR

The schedule below is for planning purposes. It reflects the past actual dates as well as projected future dates and is subject to change. Specific approval dates and coordination with the GLWA Board of Directors is necessary to identify key milestones leading up to the ultimate approval of the 2021-2025 CIP.

| Date                     | Description                                                                                   |  |
|--------------------------|-----------------------------------------------------------------------------------------------|--|
| June 21, 2019            | Distribute & Train Team Members on<br>Business Case Evaluation Database                       |  |
| August 23, 2019          | Team Members BCE's are Due                                                                    |  |
| September 16-23,<br>2019 | Water and Wastewater Review<br>Committee Meetings                                             |  |
| September 30, 2019       | New Meeting – Alignment of scoring & project schedules                                        |  |
| October 1, 2019          | Executive Leadership Team Reviews BCE's & Modifications to CIP                                |  |
| October 8, 2019          | Provide Preliminary Draft #1 Data to Finance                                                  |  |
| October 9, 2019          | Upload Preliminary Draft #1 to<br>Legistar & Member Outreach<br>(without Chapter 3)           |  |
| October 15, 2019         | First GLWA CIP Committee Review of CIP – Version 1Preliminary Draft #1                        |  |
| October 17, 2019         | First Member Partner Review of CIP –<br>Preliminary Draft #1 at Charges<br>Rollout Meeting #1 |  |
| November 5, 2019         | Member Partner & Board Comments Due                                                           |  |
| November 12, 2019        | Provide Preliminary Draft #2 Data to Finance                                                  |  |
| December 11, 2019        | Upload Preliminary Draft #2 to<br>Legistar and Member Outreach                                |  |

| December 17, 2019 | Second GLWA CIP Committee<br>Member Partner Review of CIP – |
|-------------------|-------------------------------------------------------------|
| December 17, 2017 |                                                             |
|                   | Preliminary Draft #2                                        |
| February 2020     | Request Board approval of the 2021-                         |
| Tebruary 2020     | 2025 CIP                                                    |
| July 1, 2020      | Effective Date of 2021- 2025 CIP                            |
|                   |                                                             |

# SECTION 3 Business Case Evaluation Development

#### 3.1. Project Prioritization

GLWA has continued to utilize the project prioritization tool to provide a standardized method of prioritizing projects for the annual GLWA CIP development. This prioritization tool attempts to quantify a project ranking to allow for objective prioritization. When asset management information is available on the asset level, the information will be used to supplement the Business Case Evaluation process to ensure the effective and efficient use of public funds. The CIP development and prioritization process results in a prioritized list of projects with anticipated CIP year, schedule and overall cost for inclusion within the official 5-year CIP.

Currently, projects to be considered for inclusion in each year of the CIP are identified by the subject matter expert engineers or project managers. These engineers and project managers utilize available institutional knowledge, data, operations and maintenance reports, need and condition assessments and master plans to identify the project need. The following criteria have been identified to capture GLWA's overall strategy related to the probability and consequence of failure associated with each identified project: (i) condition, (ii) performance (Service Level/Reliability), (iii) operations & maintenance, (iv) regulatory (environmental & Legal), (v) public health & safety, (vi) public benefit, (vii) financial and (viii) efficiency and innovation.

The results of the project prioritization by each project manager and by the individual review committees are included in Chapter V. These provide a quick glance prioritization of each project as they relate to others. This will be very useful to identify lower priority projects that may be delayed in the event of emergencies that may redirect funding away from the existing project or to prioritize procurement activities.

#### 3.2. Review Committee

Currently, each New and Future Planned projects are scored by the project manager during the completion of the Business Case Evaluation and by a Review Committee. The Review Committee is comprised of a core group of members from leadership in the Financial Service Group, Planning Services Group, and from the business unit associated with Water or Wastewater Service Area. To facilitate transparency in this process, a member from one or more of GLWA's member partner communities also participates as a scoring member of the Review Committee. The 2021-2025 Capital Improvement Program Development Water and Wastewater Review Committee members are identified below in Table II-1 and Table II-2, respectively.

**Table II-1. Water Review Committee Members** 

| Name           | Group                                  |
|----------------|----------------------------------------|
| Eric Witte     | Member Partner Rep. – City of Dearborn |
| Ali Khraizat   | GLWA Systems Planning                  |
| Jody Caldwell  | GLWA Systems Planning                  |
| Suzanne Coffey | GLWA Systems Planning                  |
| Todd King      | GLWA Water and Field Services          |
| John Barron    | AECOM CIPMO                            |
| Scott Schultz  | GLWA Financial Services                |
| Dana Thurman   | GLWA Systems Planning                  |
| John Norton    | GLWA Water and Field Services          |
| Bill Fritz     | GLWA Systems Planning                  |
| Cheryl Porter  | GLWA Water Operations                  |

| Terry Daniel      | GLWA Water Operations              |
|-------------------|------------------------------------|
| Biren Saparia     | GLWA Systems Control               |
| Grant Gartrell    | GLWA Water Engineering             |
| Anjanette Custard | GLWA Systems Planning              |
| Andrew Sosnoski   | GLWA Financial Services            |
| Desiree Barrett   | GLWA Financial Services            |
| Chandan Sood      | GLWA Systems Analytics & Meter Ops |

**Table II-2. Wastewater Review Committee Members** 

| Name              | Group                                     |  |  |
|-------------------|-------------------------------------------|--|--|
| Tom Murray        | Member Partner Rep. – City of Allen Park  |  |  |
| Ali Khraizat      | GLWA Systems Planning                     |  |  |
| Jody Caldwell     | GLWA Systems Planning                     |  |  |
| Bill Fritz        | GLWA Systems Planning                     |  |  |
| Dana Thurman      | GLWA Systems Planning                     |  |  |
| John Barron       | AECOM CIPMO                               |  |  |
| Suzanne Coffey    | GLWA Wastewater Operations                |  |  |
| Chris Nastally    | GLWA Wastewater Operations                |  |  |
| Chris Wilson      | GWLA Wastewater Operations                |  |  |
| Philip Kora       | GLWA Wastewater Engineering               |  |  |
| Dan Alford        | GLWA Wastewater Engineering               |  |  |
| Navid Mehram      | GLWA Wastewater Operations                |  |  |
| Sajit George      | GLWA Wastewater Operations                |  |  |
| Biren Saparia     | GLWA Systems Control                      |  |  |
| Anjanette Custard | GLWA Systems Planning                     |  |  |
| Andrew Sosnoski   | GLWA Financial Services                   |  |  |
| Tina Gillery      | GLWA Financial Services                   |  |  |
| Todd King         | GLWA Field Services                       |  |  |
| Chandan Sood      | GLWA Systems Analytics & Meter Operations |  |  |

#### 3.3. BCE Guidance Document

To aid in evaluating and understanding the project prioritization and process, a Capital Improvement Project Prioritization Guidance Document has been developed. This document details the purpose of the prioritization tool, identifies the anticipated CIP schedule and key milestones, provides details about each criterion and the associated weighting factor and demonstrates the overall prioritization calculation. Most importantly, this document provides the detailed guidance related to each category and displays examples of the information needed for project managers or the review committees to make accurate scoring decisions. In addition, as this methodology continues to evolve within the Authority, it is anticipated that future BCE's will contain specific data related to each criteria being evaluated thus creating a better and more well defined project justification that can be easily relatable to other projects submitted.

#### SECTION 4 KEY FEATURES

#### 4.1. Project Status Description

In order to determine a particular projects progress within the CIP, a status is assigned to each project within the CIP. The project status designation provides a high-level understanding of the progress. Projects are often divided into multiple phases or categories based upon the contract type. As such, each phase of a multi-phase project will have its own status and contract number. Descriptions of each status are provided in Table II-3 on the following page. Projects that have been newly introduced into the CIP this year have been designed as "New to the CIP" based upon a checkmark within the Business Case Evaluation. In addition, projects new to the CIP are included in tabular format within Chapter IV, Section 1.

**Table II-3. Project Status Descriptions** 

| <b>Project Status</b> | Description                                                                                                                                                                                                                                                 |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Future<br>Planned     | Project that does not have an assigned BS&A Project Number.                                                                                                                                                                                                 |
| Active                | Project that has an assigned BS&A Project Number in<br>the financial system and the procurement process has<br>been initiated for one or more the project's phases.                                                                                         |
| Pending Close-<br>out | Project that has an assigned BS&A Project Number, a Notice to Start Work has been issued, has projected expenditures for the current fiscal year equal to \$100,000 or less - with no future projected expenditures and has reached substantial completion. |
| Closed                | Project that has been officially completed.                                                                                                                                                                                                                 |
| Reclassified          | Project that has been merged into the scope of work of an existing project.                                                                                                                                                                                 |
| Cancelled             | Project that has been completely cancelled and removed from the CIP.                                                                                                                                                                                        |



#### 4.2. Phase Categories

Often projects are broken up into several phases related to how the project will be delivered and managed. Categories may be grouped to align with work to be performed within each individual phase. Individual categories are identified and named below, however, several categories may exist for each phase. In this case, this implies the same vendor, under one contract, will be performing multiple categories of the overall project. The current project categories are identified below.

| S   | Study                   |
|-----|-------------------------|
| D   | Design                  |
| C   | Construction            |
| CA  | Construction Assistance |
| DB  | Design and Build        |
| DBA | Design Build Assistance |
| CM  | Construction Management |
| PM  | Project Management      |
| TBD | To Be Determined        |

#### 4.3. CIP Types

Multiple CIP types are necessary to distinguish the differences in intent of how a CIP item is to be used. This CIP contains two primary CIP types: Projects and Programs. A typical project that has a specific scope and timeframe is considered a Project. Whereas Programs do not have specifically developed scopes and typically extend over many years. Last year there was an additional CIP type, Allowances that were used to address unanticipated pipeline and equipment failures, this has since been removed and is being funded differently. Table II-4 defines each CIP Type.

#### SECTION 5 REPORT FORMAT

**VI PROJECTS** 

BY CATEGORY

The 2021-2025 CIP format is similar to the 2020-2024 CIP document for a transparent, navigable and user-friendly report.

#### 5.1. Varying Degrees of Project Detail

Within the document, projects and programs are portrayed in varying degrees of detail that should meet the needs of most readers. Projects can be viewed in the basic line item format that provides general information about the project and the projected expenditures. Within this format, projects have been rolled up by their major category of Water, Wastewater and Centralized Services, and totals are provided. Projects have also been identified separately within each category to provide the reader more information on the type and amount of each project within specific service areas. One-page summaries of each project gives the reader more detail of the project phases, purpose, scope of work and potential challenges. Finally, for greater detail on each project, the BCE documents are provided in Appendix A, B and C.

**V** PRIORITIZATION

#### Table II-4. CIP Types

| CIP Type | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Project  | A "Project" consists of the replacement and/or rehabilitation of specific capital assets within a finite timeframe and scope.                                                                                                                                                                                                                                                                                                                                                                     |
| Program  | A "Program" consists of the replacement and/or rehabilitation of specific capital assets on an ongoing or reoccurring basis. The program scope and/or projected expenses may vary from year-to-year depending on the needs identified within the program and as newly established programs develop consistent schedules, requirements and history over time. Although not typically identified in the CIP future years projected expenses, these programs will typically be funded in perpetuity. |

#### 5.2. Revised Project Categories & Numbering

The revised categorization methodology and numbering scheme of CIP projects and programs introduced in the 2018-2022 CIP is continued in the 2021-2025 CIP. The project characterization is extremely beneficial to align CIP project budgets by managing business area cost centers. In addition, these directly align with costs centers in the operating budget within the Authority's financial system.

As in the 2019-2023 CIP, projects within programs and assigned a CIP number within that program or allowance. This is required within the BS&A Financial system to accurately track and report expenses incurred. These project "carve outs" have been shown within this CIP as phases within the parent program or allowance.

This numbering is based on the "smart" numbering system as identified in Table II-5 below.

#### 5.3. General Purpose

The General Purpose category within Project Category 2 and Project Category 3 in Table II-5 are necessary to identify projects that cross over multiple project categories. Projects that are not specifically attributed to one particular area will be identified here.

#### 5.4. Programs

As identified previously, programs consist of the replacement and/or rehabilitation of specific capital asset on an ongoing or reoccurring basis. The program scope and/or projected expenses may vary from year-to-year, depending on the needs identified within the program, and as newly established programs develop consistent schedules, requirements and history over time. Although not typically identified in the CIP future years projected expenses, these programs will typically be funded in perpetuity. The numbering structure of the "Program" category is slightly different in order to allow up to 99 separate projects to be attributable to each program. As discussed previously, these projects identified under a parent program will be issued a CIP number, however will be displayed within the CIP as a phase of the overall parent program.



# PROCESS

III FINANCE

IV CIP SUMMARY

**V** PRIORITIZATION

VI PROJECTS BY CATEGORY VII TEN-YEAR OUTLOOK VIII PROJECT DESCRIPTIONS

IX GLOSSARY

Table II-5. Capital Project/General Ledger Account Numbering Protocol - Six Numeric Digits (4th Segment of GL String)

| Digit 1            | Digit 1 + Digit 2                         | Digit 1 + Digit 2 + Digit 3 ( + Digit 4) | Digits 4 - 6 / Digits 5 - 6      |  |
|--------------------|-------------------------------------------|------------------------------------------|----------------------------------|--|
| Project Category 1 | Project Category 2                        | Project Category 3                       | Number 000-999 /<br>Number 00-99 |  |
|                    |                                           | 111 - Lake Huron                         |                                  |  |
|                    |                                           | 112 - Northeast                          |                                  |  |
|                    | 11X - Water Treatment Plants & Facilities | 113 - Southwest                          |                                  |  |
|                    | Water Freatment Faints & Facilities       | 114 - Springwells                        |                                  |  |
|                    |                                           | 115 - Water Works Park                   |                                  |  |
|                    |                                           | 116 - General Purpose                    |                                  |  |
| 1XX -Water         | 12X - Field Services                      | 121 - General Purpose                    |                                  |  |
| TAM Water          | 12X Tield betylees                        | 122 - Transmission System                |                                  |  |
|                    | 13X - Systems Control Center              | 131 - General Purpose                    |                                  |  |
|                    | 13A Systems control center                | 132 - Pump Stations & Reservoirs         |                                  |  |
|                    | 14X - Water Quality                       | 141 - General Purpose                    |                                  |  |
|                    | 15X - Metering                            | 151 - General Purpose                    |                                  |  |
|                    | 16X - General Purpose                     | 161 - General Purpose                    |                                  |  |
|                    | 17X - Programs                            | 1701 - Programs                          | <u></u>                          |  |
|                    |                                           | 211 - Primary Treatment                  |                                  |  |
|                    | 21X - Water Resource Recovery Facility    | 212 - Secondary Treatment & Disinfection |                                  |  |
|                    |                                           | 213 - Residuals Management               |                                  |  |
|                    |                                           | 214 - Industrial Waste Control           |                                  |  |
|                    |                                           | 215 - CSO RTB & SDF                      |                                  |  |
|                    |                                           | 216 - General Purpose                    |                                  |  |
| 2XX - Wastewater   | 22X - Field Services                      | 221 - General Purpose                    |                                  |  |
|                    | ZZX TICIA SCIVICCS                        | 222 - Interceptor                        |                                  |  |
|                    |                                           | 231 - General Purpose                    |                                  |  |
|                    | 23X - Systems Control Center              | 232 - Pump Stations                      |                                  |  |
|                    |                                           | 233 - In System Devices (Dams, ISD's)    |                                  |  |
|                    | 24X - Metering                            | 241 - General Purpose                    |                                  |  |
|                    | 25X - General Purpose                     | 251 - General Purpose                    |                                  |  |



II CIP DEVELOPMENT + PROCESS

III FINANCE

IV CIP SUMMARY

V PRIORITIZATION

VI PROJECTS BY CATEGORY VII TEN-YEAR OUTLOOK VIII PROJECT DESCRIPTIONS

IX GLOSSARY

| Digit 1                | Digit 1 + Digit 2            | Digit 1 + Digit 2 + Digit 3 ( + Digit 4) | Digits 4 - 6 / Digits 5 - 6      |
|------------------------|------------------------------|------------------------------------------|----------------------------------|
| Project Category 1     | Project Category 2           | Project Category 3                       | Number 000-999 /<br>Number 00-99 |
|                        | 26X - Programs               | 2601 - Programs                          |                                  |
|                        |                              | 270 - Multiple CSO facilities            |                                  |
|                        |                              | 271 - Puritan Fenkell                    |                                  |
|                        |                              | 272 - Seven Mile                         |                                  |
|                        |                              | 273 - Hubbell Southfield                 |                                  |
|                        | 27X – CSO Facilities         | 274 - Leib                               |                                  |
|                        |                              | 275 - St. Aubin                          |                                  |
|                        |                              | 276 - Conner Creek                       |                                  |
|                        |                              | 277 - Baby Creek                         |                                  |
|                        |                              | 278 - Oakwood                            |                                  |
|                        |                              | 279 - Belle Isle                         |                                  |
|                        | 31X - Information Technology | 311 - General Purpose                    |                                  |
|                        |                              | 312 - Service Desk                       |                                  |
|                        |                              | 313 - Infrastructure                     |                                  |
|                        |                              | 314 - Enterprise Applications            |                                  |
|                        |                              | 315 - Business Applications              |                                  |
|                        |                              | 316 - Security                           |                                  |
| 3XX - Central Services |                              | 317 - Project Management Office          |                                  |
| omi dentrar bervices   | 32X - Fleet                  | 321 - General Purpose                    |                                  |
|                        | 33X - Facilities             | 331 - General Purpose                    |                                  |
|                        | 34X - Security               | 341 - General Purpose                    |                                  |
|                        | 35X - Energy Management      | 351 - General Purpose                    |                                  |
|                        | 36X - Engineering            | 361 - General Purpose                    |                                  |
|                        | 37X - General Purpose        | 371 - General Purpose                    |                                  |
|                        | 38X - Programs               | 3801 - Programs                          |                                  |

#### 5.5. Navigation

Links have been included throughout this document to direct the reader to varying level of project details. Links to major sections are embedded within the table of contents, and CIP numbers within the master project table are consistent throughout the CIP materials, so that a digital search for the CIP number will quickly locate each mention of the project. Due to the size of the Appendices, these documents will be maintained separately from the main body text.

#### 5.6. CIP and Business Unit Overview

In order to understand the full extent of the Water and Wastewater Systems under the responsibility of GLWA, sections are included to provide an overview of the services provided and infrastructure maintained within each category. While the information is not all-inclusive, it does contain a substantial amount of reference information that will help the reader familiarize themselves with the capital assets and responsibilities of each business unit. As the CIP document evolves annually, these sections will be continuously updated to provide a great source of reference material related to the GLWA infrastructure.

#### 5.7. CIP Database

Continuing with improvements seen in the 2020-2024 CIP related to the development of the CIP database for the data management of project business case evaluation information and the generation of reports, the database has been improved to allow for better usability, user support, and access control.

#### 5.8. Project Risk Matrix

Project risks are identified specifically related to their Probability of Failure (PoF) and Consequence of Failure (CoF) and portrayed on an overall Risk Matrix. The overall criteria remain unchanged, however, in order to show each project on the risk matrix, the eight criteria used in the project prioritization framework are

designated as either a PoF or CoF primary risk driver. The designation of PoF and CoF to each criterion as primary risk driver is shown in Table II-6.

After each criterion is scored for each project, the weighted PoF and CoF factors have been calculated. This provides a 1 to 5 vertical axis value for probability of failure and a 1 to 5 horizontal axis value for the consequence of failure. This point is plotted with the other projects to show its relative position compared to others within the matrix. A sample of the matrix is shown in Figure II-1.

This provides the varying audiences additional information related to the overall project risk as it relates to its consequence and probability of failure.

Table II-6. Risk Criteria.

|   | Criteria                                     | Primary<br>Risk Driver |
|---|----------------------------------------------|------------------------|
| 1 | Condition                                    | Probability            |
| 2 | Performance (Service<br>Level / Reliability) | Probability            |
| 3 | Regulatory<br>(Environmental/Legal)          | Consequence            |
| 4 | O&M                                          | Probability            |
| 5 | Public Health & Safety                       | Consequence            |
| 6 | Public Benefit                               | Consequence            |
| 7 | Financial                                    | Consequence            |
| 8 | Efficiency & Innovation                      | Consequence            |

**VI PROJECTS** 

BY CATEGORY

### **RISK MATRIX**

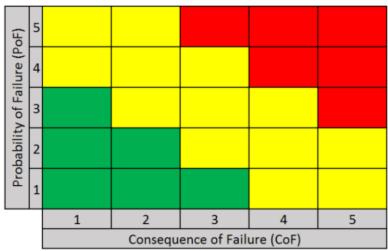



Figure II-1. Risk Matrix.

#### 5.9. Cost Estimation Classifications

The cost estimate classification rating has again been included for each phase of most projects, based upon the estimates' degree of accuracy according to the level of project definition. This cost estimate rating gives the reader an idea of whether the cost estimate is a ballpark-level estimate, generally for work projected in the out years, or a higher-confidence estimate, such as for work projected to start sooner or already under contract.

GLWA has adopted the American Association of Cost Engineering (AACE) International system for classifying cost estimates. This standardized method for classifying project phases will be very beneficial in managing expectations related to the accuracy of the associated procurement contracts.

**Table II-6. AACE Cost Estimate Classes** 

| Estimat<br>e Class | Project<br>Definition | End Usage                              | Method                                                                   | Avei<br>Expe<br>Accu<br>Rai | cted<br>racy |
|--------------------|-----------------------|----------------------------------------|--------------------------------------------------------------------------|-----------------------------|--------------|
| Class 5            | 0% to 2%              | Screening or feasibility               | Judgement,<br>trend<br>analysis,<br>parametric                           | 120<br>%                    | - 60%        |
| Class 4            | 1% to<br>15%          | Concept<br>study or<br>feasibility     | More parametric, expert opinion, trend analysis                          | 85%                         | 43%          |
| Class 3            | 10% to<br>40%         | Budget<br>authorizatio<br>n or control | Combination s (detailed, unit cost, activity-based + class 4 & 5 methods | 40%                         | 20%          |
| Class 2            | 30% to 70%            | Control or bid/tender                  | Primarily<br>deterministic                                               | 20%                         | 10%          |
| Class 1            | 50% to<br>100%        | Check<br>estimate or<br>bid/tender     | Deterministic                                                            | 10%                         | -5%          |



I OVERVIEW

# PROCESS

III FINANCE

IV CIP SUMMARY

V PRIORITIZATION

VI PROJECTS BY CATEGORY VII TEN-YEAR OUTLOOK VIII PROJECT DESCRIPTIONS

IX GLOSSARY

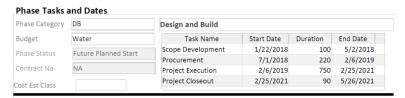
# 5.10. Innovation, Master Plan Right-Sizing, Redundancy/Reliability & NE WTP Related Projects

The development of the database and means to intake and report out on project BCE's has allowed GLWA to classify and coordinate projects based on key areas of interest. Several areas of interest have been identified and can be seen in Chapter IV. These areas are:

- Innovation: Projects that may have a possibility at utilizing an innovative solution or process.
- Master Plan Right-Sizing: Projects that have incorporated the 2015 Water Master Plan recommendations to "Right-Size" infrastructure to allow for future capital cost avoidance by derating the water supply system.
- Redundancy & Reliability: Projects that have a direct impact at improving system redundancy and reliability.
- NE WTP Repurposing: Projects necessary to meet the 2015 Water Master Plan recommendations to repurpose the Northeast Water Treatment Plant to allow for future capital cost avoidance.

#### 5.11. Program Projects

Projects that were performed under programs were identified by the CIP group and issued a CIP number. These projects have been derived from the outcome of their parent program. The CIP number associated with these projects is numerically relevant to the parent CIP number. To better portray this relationship in the CIP, these projects are rolled up as phases under the parent CIP program.


#### 5.12. Project Year-to-Year Comparison

In order to compare a project's projected expenses from one year to the next, comparison tables have been included in each project summary and BCE. This also allows the reader to identify how the project schedule may have changed from year-to-year. Project Managers' and Engineers' description of the change is typically also included at the project level.

| CIP Version | (in \$1,000s) Com<br>2016 | 2017 | 2018  | 2019  | 2020  | 2021 | 2022 | 2023 | 2024 | Total |
|-------------|---------------------------|------|-------|-------|-------|------|------|------|------|-------|
| 2018        |                           |      | 1,000 | 3,000 | 1,600 |      |      |      | 0    | 5,600 |
| 2019        | 0                         |      | 251   | 3,919 | 1,187 | 0    | 0    | 0    | 0    | 5,357 |

#### 5.13. Project Phase Schedule

A significant benefit for stakeholders associated with GLWA's CIP process is related to the information provided for project phase scheduling. Many projects have multiple phases and, in the past, an accurate understanding of when these project phases were scheduled was unknown. Starting with the 2019 CIP, most project phases have been scheduled to show the high-level tasks of Scope Development, Procurement, Project Execution and Project Closeout. This information is beneficial to GLWA's Procurement Group to determine overall procurement needs and resources, as well as, for the engineering work areas to manage project delivery. Finally, this schedule provides the vendor community with an estimate of timing related to projects they may be interested in pursuing. Understanding that this is the first year of tracking the project phase schedules in this manner, it is anticipated that each future year will provide better and more concise information related to these schedules.





# PROCESS

III FINANCE

IV CIP SUMMARY

V PRIORITIZATION

VI PROJECTS BY CATEGORY VII TEN-YEAR OUTLOOK VIII PROJECT DESCRIPTIONS

IX GLOSSARY

#### SECTION 6 2020 CIP CHANGES

Several new enhancements are visible in the 2021-2025 CIP. The CIP continues to improve and evolve to provide the various stakeholders accurate and timely information at their fingertips.

Modifications to the 2021 CIP include updates to the BCE forms with focus on the problem statements and alternative analysis, alignment with procurement terminology and stage-gates. In addition, the 2021 CIP now includes an Integrated Master Schedule (IMS) for both Water and Sewer projects.

With the addition of the Capital Improvement Program Manager (AECOM Team) major changes will be identified and many more changes, improvements and modification are in conceptual form now and will likely be available for the 2022 CIP. This document, the format and content will continue to change and improve from year-to-year as the process matures.

**V** PRIORITIZATION

# III. CIP FINANCIAL CONSIDERATIONS

#### SECTION 1 INTRODUCTION

The intersection of the CIP and the GLWA's overall financial plan balances several objectives to support the Authority's mission. Those objectives include the following:

- ✓ Transparency in the development of the financial plan
- ✓ Collaboration internally and externally
- ✓ Ensure sustainability
- ✓ Reduce the debt burden
- ✓ Smoothing of annual adjustments to service charges
- ✓ Improve the Authority's financial position

The Authority draws upon five sources of funding for its CIP:

- 1. **Bond Proceeds**: The Authority uses an incremental method of funding long-lived capital projects through a bond financing program. The Authority issues revenue bonds pursuant to Michigan Public Act 94 of 1933 (the Revenue Bond Act). The Act provides a pledge of "net revenues" for the payment of the bond principal and interest. "Net revenues" is the revenues of the system remaining after deducting the reasonable expenses of administration, operation, and maintenance of the system.
- 2. Revenue Financed Capital (Improvement & Extension Fund): Based upon ongoing expense, capital, and revenue optimization efforts, the Authority is able to build reserves to use pay-as-you go funding for shorter-lived and lower-dollar capital expenditures as well as to reduce the level of borrowing for longer-lived assets. These funds are not budgeted for use until received and recorded in the Improvement & Extension Fund for the water or the sewer system.
- 3. **Federal Loan Programs:** The Authority's sources of funding include lower cost financing programs including

- the State Revolving Fund (SRF) Loan Program and the Drinking Water Revolving Fund (DWRF) Loan Program.
- 4. **Grants:** The Authority utilizes public grants programs such as the State of Michigan's Stormwater, Asset Management, and Wastewater Program (provides both grants and loans) and is pursuing federal and private grants for energy optimization.
- 5. **Contribution in Aid of Construction:** Periodically, the Authority has the opportunity to partner with other entities for the design and construction or improvement of an asset. Depending on the nature of the shared financing strategy, the Authority may offset the cost of System expansion or improvements with direct or indirect capital from that partner.

To ensure proper accountability of funding sources and uses, the Authority utilizes two funds for its capital program for each system: the Construction Bond Fund and the Improvement & Extension (I&E) Fund.

- ✓ **Construction Bond Fund:** This fund represents the proceeds of bond issuances and related interest earnings for the purposes of financing capital improvements. New with this CIP, GLWA has made a concentrated effort to implement a CIP financial plan strategy where long-lived assets, defined as constructed infrastructure and plant facilities with an estimated useful life greater than 20 years, are eligible for bond funding.
- ✓ **Improvement & Extension (I&E) Fund:** The I&E Fund is defined by the Authority's Master Bond Ordinance (MBO) as the "fund used for improvements, enlargements, extensions or betterment" of the System. Cash receipts of the Authority are transferred into the I&E Fund pursuant to a flow of funds after commitments are met for a monthly allocation of operations and maintenance

expense, debt service, pension, WRAP, budget stabilization fund, and extraordinary repair and replacement fund as administered by a trustee. Capital outlay items are funded with I&E Funds. Capital outlay are items that are generally purchased (rather than constructed) and with an estimated useful life of less than 20 years.

The basis of accounting for the capital spending is the accrual basis. Under this basis of accounting, revenues are recognized when earned and measurable regardless of when collected; and expenses are recorded, or accrued, on a matching basis when incurred. Accrued expenses are expected to be paid in a subsequent accounting period. For purposes of this CIP, the terms expenses and expenditures are used interchangeably.

# SECTION 2 SUMMARY CIP FINANCIAL PLAN REVIEW AND ANALYSIS

The GLWA CIP financial plan document is based on a foundational database of capital projects and programs to support improved analysis and decision-making, provide transparency, balance risk and opportunity, and demonstrate greater clarity in the long-term GLWA financial strategy. With the ultimate performance measure of lowering the cost of capital, a better-executed financial plan optimizes the use of bonds, revenue financial capital, revolving fund loans, and grants. It also contemplates execution risk (actual rate of capital project delivery) versus inherent risk in project cost estimating. Lastly, a sustainable financial plan encompasses flexibility to allow for strategic timing of new debt, pace of cash flow needs, and adequate reserves for system needs.

While the GLWA Board of Directors approves the plan, the authority to spend does not occur until additional project review processes are completed prior to the procurement process. Depending on the scope and dollar amount of the project, final approval to proceed may include customer engagement, Chief

Executive Officer review, and GLWA Board CIP Committee review and/or GLWA Board action.

Recognizing the different scope between the CIP which has a broader strategic view of system needs versus the tactical financial plan which models use of cash reserves and future borrowing, the GLWA is implementing a new "capital spend rate assumption policy" for the FY 2020 – 2024 CIP. This policy, provided below, was adopted by the GLWA Board of Directors on November 28, 2018.

#### **Capital Program Spend Rate Assumption Policy**

**Purpose:** The Spend Rate Assumption (SRA) policy provides an analytical approach to bridge the total dollar amount of projects in the Capital Improvement Plan (CIP) with what can realistically be spent due to limitations beyond GLWA's control and/or delayed for non-budgetary reasons. Those limitations, whether financial or non-financial, necessitate the SRA for budgetary purposes, despite the prioritization established in the CIP. The outcome is a reasoned balance between a desired level of capital investment with financial strategies to manage debt levels and control adjustments to customer charges.

**Policy:** Annually, a projected spend rate assumption for the financial plan related to the proposed capital improvement plan will be established based upon pertinent factors and data available at that time. Such pertinent factors and data will include the mix of projects and phases in the proposed CIP, interdependency risk, criticality, and other measures provided by the GLWA team members that develop and manage the CIP projects. That spend rate assumption will be presented to the Audit Committee no later than December 31st each year after the GLWA Board, Capital Improvement Planning Committee, and member partners have had the opportunity to review the draft capital improvement plan.

The remainder of this chapter provides an analysis of information in the CIP database that will inform the spend rate assumption for future financial plans.

#### 2.1. Cost Pool Responsibility

Revenue requirements are the basis for establishing customer charges. Included in that calculation are operations and maintenance expense, debt service, Master Bond Ordinance (MBO) reserve requirements, system lease requirements, revenue financed capital targets, water residential assistance program commitments, and legacy obligations. The cost of capital improvements is allocated to customers among four general cost pools as described following:

1. *Common-to-All (CTA)* represents costs that are allocable to all customers.

- 2. *Oakland-Macomb Interceptor Drainage District (OMID)* represents costs that are allocable to a portion of the sewer system that receives flows from OMID's system.
- 3. **Suburban Only** represents costs that are allocable to wholesale customers outside the City of Detroit.
- 4. *CSO 83/17* represents capital costs that are allocated based upon terms of a 1999 rate settlement agreement sanctioned by a federal court. The outcome was an allocation of 83% of "combined sewer overflow control facilities" (CSO) costs to City of Detroit customers and 17% to other customers.

As shown in Table III-1. and Table III-2. below, the majority of the proposed capital improvements are allocated to the common-to-all cost pool.

**Table III-1. Cost Allocation: Water** Financial figures are in thousands of dollars (\$1,000's).

|                    |            | Percent of |            |            |            |                         |                    |
|--------------------|------------|------------|------------|------------|------------|-------------------------|--------------------|
| Cost Allocation    | FY21       | FY22       | FY23       | FY24       | FY25       | Total FY's<br>2021-2025 | Five Year<br>Total |
| Water              |            |            |            |            |            |                         |                    |
| Common-to-all      | \$ 145,029 | \$ 177,383 | \$ 200,753 | \$ 212,732 | \$ 193,064 | \$ 928,961              | 99.3%              |
| Suburban Only      | 2,535      | 2,535      | 1,139      | 121        | 120        | 6,450                   | 0.7%               |
| <b>Grand Total</b> | \$ 147,564 | \$ 179,918 | \$ 201,892 | \$ 212,853 | \$ 193,184 | \$ 935,411              | 100.0%             |



# PROCESS

III FINANCE

IV CIP SUMMARY V PRIORITIZATION VI PROJECTS
BY CATEGORY

VII TEN-YEAR OUTLOOK VIII PROJECT DESCRIPTIONS

IX GLOSSARY

#### **Table III-2. Cost Allocation: Wastewater**

Financial figures are in thousands of dollars (\$1,000's).

|                    | Tatal EVIa | Percent of |            |            |            |                         |                    |
|--------------------|------------|------------|------------|------------|------------|-------------------------|--------------------|
| Cost Allocation    | FY21       | FY22       | FY23       | FY24       | FY25       | Total FY's<br>2021-2025 | Five Year<br>Total |
| Sewer              |            |            |            |            |            |                         |                    |
| Common-to-all      | \$ 100,330 | \$ 100,117 | \$ 127,781 | \$ 194,221 | \$ 145,006 | \$ 667,455              | 90.3%              |
| CSO 83/17          | 10,308     | 12,595     | 12,890     | 5,077      | 24,787     | 65,657                  | 8.9%               |
| To Be Decided      | 0          | 45         | 172        | 3,960      | 2,146      | 6,323                   | 0.8%               |
| <b>Grand Total</b> | \$ 110,638 | \$ 112,757 | \$ 140,843 | \$ 203,258 | \$ 171,939 | \$ 739,435              | 100%               |

#### 2.2. CIP Funding Based on Estimated Useful Life

The long-term financial plan differentiates between appropriate uses of long-term debt versus revenue financed capital in the Improvement & Extension (I&E) Fund as defined in the MBO. As a general rule, assets with a life of less than 20 years are funded with I&E Funds. Assets with a life greater than 20 years are funded with a blend of debt and I&E Funds. Building I&E Funds over time allows GLWA to position itself to further reduce reliance on debt. Exceptions to that plan may be to take advantage of lower cost borrowings from the revolving fund loan programs or a revision of the plan to optimize refunding savings. For this reason, the five-

year financial plan is regularly reviewed during the fiscal year. Updates may also occur due to grant awards, collaboration opportunities, and changes in budgetary conditions. The financial plan reflects grants and federal and state loans only after approval is received by the grantor or authorizing party.

As shown in Table III-3. and Table III-4., most of the CIP projects are longer-lived assets, defined as greater than a 20-year estimated useful life. Shorter-lived assets scheduled for acquisition or replacement are identified in the five-year capital outlay plan provided in the GLWA Biennial Budget and Five-Year Plan document.



# PROCESS

III FINANCE

IV CIP SUMMARY V PRIORITIZATION VI PROJECTS
BY CATEGORY

VII TEN-YEAR OUTLOOK VIII PROJECT DESCRIPTIONS

IX GLOSSARY

#### Table III-3. Asset Life and Eligibility for Funding with Long-Term Debt: Water

Financial figures are in thousands of dollars (\$1,000's).

|                    |            | Projected  | Capital Expe | enditures  |            |                      |                               |
|--------------------|------------|------------|--------------|------------|------------|----------------------|-------------------------------|
| Asset Life Range   | FY21       | FY22       | FY23         | FY24       | FY25       | Total FY's 2021-2025 | Percent of Five<br>Year Total |
| Water              |            |            |              |            |            |                      |                               |
| <20 Years          | \$ 12,131  | \$ 7,709   | \$ 7,341     | \$ 13,565  | \$ 15,293  | \$ 56,039            | 6.0%                          |
| >20 Years          | 135,433    | 172,209    | 194,551      | 199,288    | 177,891    | 879,372              | 94.0%                         |
| <b>Grand Total</b> | \$ 147,564 | \$ 179,918 | \$ 201,892   | \$ 212,853 | \$ 193,184 | \$ 935,411           | 100.0%                        |

#### Table III-4. Asset Life and Eligibility for Funding with Long-Term Debt: Wastewater

Financial figures are in thousands of dollars (\$1,000's).

|                     | Projected Capital Expenditures |         |    |              |    |         |    |              |    |         |                     |                               |
|---------------------|--------------------------------|---------|----|--------------|----|---------|----|--------------|----|---------|---------------------|-------------------------------|
| Asset Life<br>Range | l                              | FY21    | ]  | F <b>Y22</b> |    | FY23    | 1  | F <b>Y24</b> |    | FY25    | tal FY's<br>21-2025 | Percent of Five<br>Year Total |
| Sewer               |                                |         |    |              |    |         |    |              |    |         |                     |                               |
| <20 Years           | \$                             | 11,515  | \$ | 6,990        | \$ | 10,080  | \$ | 7,250        | \$ | 22,861  | \$<br>58,696        | 7.9%                          |
| >20 Years           |                                | 99,123  |    | 105,767      |    | 130,763 |    | 196,008      |    | 149,078 | 680,739             | 92.1%                         |
| <b>Grand Total</b>  | <b>\$</b> 1                    | 110,638 | \$ | 112,757      | \$ | 140,843 | \$ | 203,258      | \$ | 171,939 | \$<br>739,435       | 100.0%                        |

#### 2.3. Project Status Analysis

As shown in Table III-5. and Table III-6. below, approximately 72% of the water system projects and 89% of the wastewater system projects are classified as "Future Planned Start". As defined in Chapter II, those projects with a Project Status of "Future Planned Start" are projects where that was included in the previous CIP and does not have an assigned BS&A Project Number.

Table III-5. Project Status Analysis: Water

Financial figures are in thousands of dollars (\$1,000's).

|                      | Total FY's | Percent of<br>Five Year |            |            |            |            |        |
|----------------------|------------|-------------------------|------------|------------|------------|------------|--------|
| Phase Status         | FY21       | FY22                    | FY23       | FY24       | FY25       | 2021-2025  | Total  |
| Water                |            |                         |            |            |            |            |        |
| Active               | \$ 74,771  | \$ 55,818               | \$ 23,470  | \$ 18,843  | \$ 14,593  | \$ 187,495 | 20.0%  |
| Future Planned Start | 63,143     | 106,041                 | 155,409    | 173,098    | 172,803    | 670,494    | 71.7%  |
| Under Procurement    | 9,650      | 18,059                  | 23,013     | 20,912     | 5,788      | 77,422     | 8.3%   |
| <b>Grand Total</b>   | \$ 147,564 | \$ 179,918              | \$ 201,892 | \$ 212,853 | \$ 193,184 | \$ 935,411 | 100.0% |

#### Table III-6. Project Status Analysis: Wastewater

Financial figures are in thousands of dollars (\$1,000's).

| Projected Capital Expenditures |             |              |             |         |      |         |      |              |      |         |      |                     | Percent of<br>Five Year |
|--------------------------------|-------------|--------------|-------------|---------|------|---------|------|--------------|------|---------|------|---------------------|-------------------------|
| Phase Status                   | ]           | F <b>Y21</b> | ]           | FY22    | F    | Y23     | ]    | F <b>Y24</b> | F    | Y25     |      | tal FY's<br>21-2025 | Total                   |
| Sewer                          |             |              |             |         |      |         |      |              |      |         |      |                     |                         |
| Active                         | \$          | 51,023       | \$          | 13,504  | \$   | 3,102   | \$   | 1,360        | \$   | 1,191   | \$   | 70,180              | 9.59                    |
| Future Planned Start           |             | 52,430       |             | 98,345  | -    | 136,851 |      | 201,507      | -    | 170,681 |      | 659,814             | 89.29                   |
| Under Procurement              |             | 7,185        |             | 908     |      | 890     |      | 391          |      | 67      |      | 9,441               | 1.30                    |
| <b>Grand Total</b>             | <b>\$</b> 1 | 110,638      | <b>\$</b> 1 | 112,757 | \$ 1 | 40,843  | \$ 2 | 203,258      | \$ 1 | 71,939  | \$ ' | 739,435             | 100.09                  |

#### 2.4. Project Category Analysis

As noted in Chapter II, project phase categories relate to how a project will be delivered and managed. Categories may be grouped to align with how the work is to be performed and often with one vendor contract. The current project categories are identified below.

| S  | Study                   |
|----|-------------------------|
| D  | Design                  |
| C  | Construction            |
| CA | Construction Assistance |
| DB | Design and Build        |

DBA.....Design Build Assistance
CM.....Construction Management
PM .....Project Management
TBD .....To Be Determined

As shown in Table III-7. and Table III-8. below, the majority of the dollars are allocated to construction and design build. From a financial standpoint, this increases the validity of the projected CIP spend once a contract is awarded as there are significantly less dollars assigned to pre-construction activities.

**Table III-7. Project Category Analysis: Water** Financial figures are in thousands of dollars (\$1,000's).

|                |            | Projected  | d Capital Expe | ,          | ,          |                         | Percent of         |
|----------------|------------|------------|----------------|------------|------------|-------------------------|--------------------|
| Phase Category | FY21       | FY22       | FY23           | FY24       | FY25       | Total FY's<br>2021-2025 | Five Year<br>Total |
| Water          |            |            |                |            |            |                         |                    |
| С              | \$ 58,632  | \$ 85,403  | \$ 116,846     | \$ 122,211 | \$ 117,994 | \$ 501,086              | 53.6%              |
| CA             | 333        | 250        | 0              | 0          | 0          | 583                     | 0.1%               |
| D              | 1,776      | 1,776      | 1,776          | 1,781      | 1,046      | 8,155                   | 0.9%               |
| D/CA           | 13,801     | 11,893     | 6,698          | 10,283     | 11,753     | 54,428                  | 5.8%               |
| DB             | 57,211     | 64,217     | 61,097         | 61,137     | 43,749     | 287,411                 | 30.7%              |
| DBA            | 0          | 0          | 953            | 3,039      | 3,642      | 7,634                   | 0.8%               |
| GLWA-PM        | 7,180      | 9,053      | 8,949          | 8,767      | 9,666      | 43,615                  | 4.7%               |
| S              | 190        | 0          | 0              | 684        | 276        | 1,150                   | 0.1%               |
| S/D/CA         | 4,608      | 3,703      | 4,214          | 3,588      | 3,699      | 19,812                  | 2.1%               |
| TBD            | 3,833      | 3,623      | 1,359          | 1,363      | 1,359      | 11,537                  | 1.2%               |
| Total Water    | \$ 147,564 | \$ 179,918 | \$ 201,892     | \$ 212,853 | \$ 193,184 | \$ 935,411              | 100.0%             |



Table III-8. Project Category Analysis: Wastewater

Financial figures are in thousands of dollars (\$1,000's).

|                |            | Projected  | d Capital Expe | nditures   | , , , , , , , , , , , , , , , , , , , |                         | Percent of         |
|----------------|------------|------------|----------------|------------|---------------------------------------|-------------------------|--------------------|
| Phase Category | FY21       | FY22       | FY23           | FY24       | FY25                                  | Total FY's<br>2021-2025 | Five Year<br>Total |
| Sewer          |            |            |                |            |                                       |                         |                    |
| С              | \$ 45,307  | \$ 45,905  | \$ 93,912      | \$ 153,425 | \$ 116,853                            | \$ 455,402              | 61.6%              |
| CA             | 223        | 12         | 0              | 0          | 0                                     | 235                     | 0.0%               |
| D/CA           | 4,455      | 2,389      | 857            | 1,284      | 504                                   | 9,489                   | 1.3%               |
| DB             | 25,700     | 15,453     | 5,817          | 622        | 0                                     | 47,592                  | 6.4%               |
| GLWA-PM        | 3,327      | 2,696      | 2,634          | 1,915      | 1,372                                 | 11,944                  | 1.6%               |
| S              | 2,910      | 2,134      | 656            | 0          | 0                                     | 5,700                   | 0.8%               |
| S/D/CA         | 21,909     | 22,592     | 7,505          | 10,643     | 6,666                                 | 69,315                  | 9.4%               |
| TBD            | 6,807      | 21,576     | 29,462         | 35,369     | 46,544                                | 139,758                 | 18.9%              |
| Total Sewer    | \$ 110,638 | \$ 112,757 | \$ 140,843     | \$ 203,258 | \$ 171,939                            | \$ 739,435              | 100.0%             |

**V** PRIORITIZATION

# **CIP SUMMARY**

#### SECTION 1 Project Updates

Many projects have changed status since the last CIP update. These projects are shown in the following tables.

Table IV-1. New Projects Added to the CIP

| CIP#   | Title                                                                             | 2021 Status                   |
|--------|-----------------------------------------------------------------------------------|-------------------------------|
| 111010 | Lake Huron Water Treatment Plant -Filtration and Pretreatment Improvements        | Future Planned                |
| 111011 | Lake Huron WTP Pilot Plant                                                        | Future Planned                |
| 111011 | Springwells Water Treatment Plant - Service                                       | ruture i iaimeu               |
| 114018 | Building Electrical Substation and Miscellaneous                                  | Future Planned                |
| 111010 | Improvements                                                                      | T uture T lumineu             |
| 115006 | Water Works Park Site/Civil Improvements                                          | Future Planned                |
| 122018 | Garland, Hurlbut, Bewick Water Transmission                                       | Future Planned                |
| 122010 | System Rehabilitation                                                             | ruture Planneu                |
| 132026 | Franklin Pumping Station Valve Replacement                                        | Active                        |
| 211010 | Rehabilitation of Sludge Processing Complexes A                                   | Future Planned                |
| 211011 | and B                                                                             | Eutura Dlannad                |
|        | WRRF PS1 Screening and Grit Improvements                                          | Future Planned Future Planned |
| 212009 | WRRF Aeration Improvements 3 and 4 WRRF Conversion of Disinfection of all Flow to | Future Planned                |
| 212010 | Sodium Hypochlorite and Sodium Bisulfite                                          | Future Planned                |
| 216009 | LM Facilities Assessment and                                                      | Active                        |
|        | Rehabilitation/Replacement                                                        |                               |
|        | WRRF Facility Optimization                                                        | Future Planned                |
|        | Condition Assessment at Blue Hill Pump Station                                    | Future Planned                |
|        | Rouge River In-system Storage Devices                                             | Future Planned                |
| 270001 | Pilot CSO Netting Facility                                                        | Future Planned                |
| 270002 | Meldrum Sewer Diversion and VR-15 Improvements                                    | Future Planned                |
| 270003 | Long Term CSO Control Plan                                                        | Future Planned                |
|        | Baby Creek Outfall Improvements Project                                           | Future Planned                |
| 341001 | Security Infrastructure Improvements on Water Facilities                          | Active                        |
| 341002 | Security Infrastructure Improvements for Wastewater Facilities                    | Active                        |

#### **Table IV-2. Projects Progressed to Active Status**

| CIP#   | Title                                                                                                        | 2020 Status    | 2021   |
|--------|--------------------------------------------------------------------------------------------------------------|----------------|--------|
| 111001 | Lake Huron Water Treatment Plant, Low-<br>Lift, High Lift and Filter Backwash<br>Pumping System Improvements | Future Planned | Status |
| 112005 | Northeast Water Treatment Plant -<br>Replacement of Covers for Process Water<br>Conduits                     | Future Planned | Active |
| 122013 | 14 Mile Transmission Main Loop                                                                               | Future Planned | Active |
| 122016 | Downriver Transmission Main Loop                                                                             | Future Planned | Active |
| 132010 | West Service Center Pumping Station -<br>Reservoir, Reservoir Pumping, and<br>Division Valve Upgrades        | Future Planned | Active |
| 132012 | Ypsilanti Booster Pumping Station<br>Improvements                                                            | Future Planned | Active |
| 132015 | Newburgh Road Booster Pumping Station<br>Improvements                                                        | Future Planned | Active |
| 211006 | WRRF PS No. 1 Improvements                                                                                   | Future Planned | Active |
| 211007 | WRRF PS #2 Bar Racks Replacements and Grit Collection System Improvements                                    | Future Planned | Active |
| 213008 | WRRF Rehabilitation of the Ash Handling Systems                                                              | Future Planned | Active |
| 216006 | Assessment and Rehabilitation of WRRF yard piping and underground utilities                                  | Future Planned | Active |

#### Table IV-3. Projects Progressed to Pending Closeout Status

| CIP#   |                                                      |        | 2021<br>Status      |
|--------|------------------------------------------------------|--------|---------------------|
| 132008 | Various Pumping Stations - Needs Assessment<br>Study | Active | Pending<br>Closeout |

#### **Table IV-4. Projects Progressed to Cancelled Status**

| CIP#   | Title                                              | 2020 Status    | 2021<br>Status |
|--------|----------------------------------------------------|----------------|----------------|
| 132025 | Northwest Booster Station Yard Piping Improvements | Future Planned | Cancelled      |

| CIP#   | Title                                                                    | 2020 Status    | 2021<br>Status |
|--------|--------------------------------------------------------------------------|----------------|----------------|
| 171400 | LED Lighting & Lighting Control<br>Improvements at All Water Facilities  | Future Planned | Cancelled      |
| 213002 | WRRF Rehabilitation of Central Offload Facility                          | Active         | Cancelled      |
| 213005 | WRRF Complex I Incinerators Decommissioning and Reusability              | Future Planned | Cancelled      |
| 222003 | North Interceptor East Arm (NIEA)<br>Evaluation and Rehabilitation       | Future Planned | Cancelled      |
| 222007 | NIEA Rehabilitation from WRRF to Gratiot Ave. and Sylvester St.          | Future Planned | Cancelled      |
| 232003 | Northeast Pumping Station                                                | Future Planned | Cancelled      |
| 331001 | Roofing Systems Replacement at Water<br>Plants and Booster Pump Stations | Future Planned | Cancelled      |

Table IV-5. Projects Progressing to Closed Status

| CIP#   | Title                                                                                                                             | 2020                | 2021   |
|--------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------|--------|
|        |                                                                                                                                   | Status              | Status |
| 113004 | Southwest Water Treatment Plant, Raw Water Sampling Modifications                                                                 | Active              | Closed |
| 114006 | Springwells Water Treatment Plant Replacement of 1958 Rapid Mixing Units                                                          | Active              | Closed |
| 114009 | SPW WTP Service Area Redundancy Study                                                                                             | Pending<br>Closeout | Closed |
| 114015 | Springwells Water Treatment Plant Emergency Grating Replacement                                                                   | Active              | Closed |
| 122001 | Parallel 42-Inch Main in 24 Mile Road from<br>Rochester Station to Romeo Plank Road                                               | Pending<br>Closeout | Closed |
| 122002 | Replacement of Five (5) PRV Pits of Treated Water Transmission System                                                             | Pending<br>Closeout | Closed |
| 122009 | Water System Improvements in Joy Road from Southfield Road to Trinity                                                             | Pending<br>Closeout | Closed |
| 122010 | Water Main Replacement within the City of Detroit - Joy Rd from Greenfield to Schaefer and Davison Ave from Lindwood to Livernois | Pending<br>Closeout | Closed |
| 132001 | Wick Road Booster Pumping Station<br>Rehabilitation                                                                               | Pending<br>Closeout | Closed |
| 132004 | North Service Center Pumping Station - Hydraulic Surge Control                                                                    | Pending<br>Closeout | Closed |

| CIP#   | Title                                                                       | 2020<br>Status      | 2021<br>Status |
|--------|-----------------------------------------------------------------------------|---------------------|----------------|
| 260100 | WRRF, Lift Station and Wastewater Collection<br>System Structures Allowance | Active              | Closed         |
| 380400 | As-needed CIP Implementation Assistance and Related Services                | Active              | Closed         |
| 380500 | Wastewater General Engineering Services on an As-needed Basis               | Pending<br>Closeout | Closed         |
| 380800 | Geotechnical and Related Services on an As-<br>Needed Basis                 | Pending<br>Closeout | Closed         |
| 380900 | General Engineering Services                                                | Pending<br>Closeout | Closed         |

#### SECTION 2 HIGHLIGHTS

#### 2.1. Possible Innovative Projects

One of the Great Lakes Water Authority's main pillars is to provide high quality through innovation. In order to ensure CIP projects are being considered for new and innovative technologies, during the project review process, projects that may be considered for innovative technologies, practices or procedures were identified by the GLWA Energy, Research & Innovation group. The following projects will be further evaluated for innovative opportunities during scope development process:

**Table IV-6. Innovation Projects** 

|        | <del>_</del>                                                      |
|--------|-------------------------------------------------------------------|
| CIP    | Title                                                             |
| 111001 | Lake Huron Water Treatment Plant, Low-Lift, High Lift and Filter  |
|        | Backwash Pumping System Improvements                              |
| 111006 | Lake Huron Water Treatment Plant, Filter Instrumentation and Raw  |
| 111000 | Water Flow Metering Improvements                                  |
| 111011 | Lake Huron WTP Pilot Plant                                        |
| 113003 | Southwest Water Treatment Plant, Low- and High-Lift Pumping       |
| 113003 | Station, Flocculation and Filtration System Improvements          |
| 113007 | Southwest Water Treatment Plant Architectural and Building        |
| 113007 | Mechanical Improvements                                           |
| 122018 | Garland, Hurlbut, Bewick Water Transmission System Rehabilitation |
| 132007 | Energy Management: Freeze Protection Pump Installation at Imlay   |
|        | Pump Station                                                      |
| 132019 | Wick Road Pumping Station Improvements                            |

I OVERVIEW

# PROCESS

III FINANCE

IV CIP SUMMARY V PRIORITIZATION VI PROJECTS
BY CATEGORY

VII

VII TEN-YEAR OUTLOOK VIII PROJECT DESCRIPTIONS

IX GLOSSARY

| CIP   | Title                                                                                                                      |  |
|-------|----------------------------------------------------------------------------------------------------------------------------|--|
| 13202 | 1 Imlay Pumping Station Improvements                                                                                       |  |
| 13202 | 2 Joy Road Pumping Station Improvements                                                                                    |  |
| 17060 | Water Transmission Main Asset Assessment Program                                                                           |  |
| 17140 | LED Lighting & Lighting Control Improvements at All Water Facilities                                                       |  |
| 21100 | 6 WRRF PS No. 1 Improvements                                                                                               |  |
| 21100 | 7 WRRF PS #2 Bar Racks Replacements and Grit Collection System Improvements                                                |  |
| 21100 | WRRF Rehabilitation of Ferric Chloride Feed System in PS-1 and Complex B Sludge Lines                                      |  |
| 21100 | WRRE Rehabilitation of the Circular Primary Clarifier Scum Removal                                                         |  |
| 21101 | 1 WRRF PS1 Screening and Grit Improvements                                                                                 |  |
| 21200 | 4 WRRF Chlorination and Dechlorination Process Equipment Improvements                                                      |  |
| 21200 | WRRF Aeration Improvements 1 and 2                                                                                         |  |
|       | 9 WRRF Aeration Improvements 3 and 4                                                                                       |  |
|       | WRRF Complex I Incinerators Decommissioning and Reusability                                                                |  |
|       | 8 WRRF Rehabilitation of the Ash Handling Systems                                                                          |  |
| 21600 | Rehabilitation of Various Sampling Sites and PS#2 Ferric Chloride System at WRRF                                           |  |
| 21600 | Assessment and Rehabilitation of WRRF yard piping and underground utilities                                                |  |
| 21600 | Rehabilitation of Screened Final Effluent (SFE) Pump Station                                                               |  |
| 22200 | North Interceptor East Arm (NIEA) Evaluation and Rehabilitation                                                            |  |
| 22200 | 7 NIEA Rehabilitation from WRRF to Gratiot Ave. and Sylvester St.                                                          |  |
| 23200 | Northeast Pumping Station                                                                                                  |  |
| 33100 | Roofing Systems Replacement at Water Plants and Booster Pump Stations                                                      |  |
| 33100 | Roofing Systems Replacement at GLWA WRRF, CSO Retention Treatment Basins (RTB) and Screening Disinfection Facilities (SDF) |  |
| 35100 | 1 LED Lighting and Lighting Control Improvements                                                                           |  |

#### 2.2. Master Plan Right-Sizing Projects

Based upon the recent completion and acceptance of the Comprehensive Water Master Plan, many water projects are being considered with reduced capital investment in order to reduce the rated capacity to master plan identified levels based upon current population and water usage. The following projects have capital

expenditure avoidance based upon water master planning efforts to right-sizing the system for current needs:

Table IV-7 . Master Plan Right-Sizing Projects

| CIP    | Title                                                                                                                |  |
|--------|----------------------------------------------------------------------------------------------------------------------|--|
| 111001 | Lake Huron Water Treatment Plant, Low-Lift, High Lift and Filter Backwash Pumping System Improvements                |  |
| 111011 | Lake Huron WTP Pilot Plant                                                                                           |  |
| 112003 | Northeast Water Treatment Plant High-Lift Pumping Station Improvements                                               |  |
| 113003 | Southwest Water Treatment Plant, Low- and High-Lift Pumping Station, Flocculation and Filtration System Improvements |  |
| 114002 | Springwells Water Treatment Plant, Low-Lift and High-Lift Pumping Station Improvements                               |  |
| 114009 | SPW WTP Service Area Redundancy Study                                                                                |  |
| 114013 | Springwells Water Treatment Plant, Reservoir Fill Line Improvements                                                  |  |
| 115001 | Water Works Park Water Treatment Plant Yard Piping, Valves and Venturi Meters Replacement                            |  |
| 122003 | Water Works Park to Northeast Transmission Main                                                                      |  |
| 122007 | Merriman Road Water Transmission Main Loop                                                                           |  |
| 122017 | 7 Mile/Nevada Transmission Main Rehab and Carrie/Nevada Flow Control Station                                         |  |
| 132007 | Energy Management: Freeze Protection Pump Installation at Imlay Pump Station                                         |  |
| 132021 | Imlay Pumping Station Improvements                                                                                   |  |
| 132025 | Northwest Booster Station Yard Piping Improvements                                                                   |  |

GLWA is also in the process of completing a Wastewater Master Plan. The following projects are a part of the conceptual wastewater master plan.

**Table IV-8. Conceptual Wastewater Master Plan Projects** 

| CIP    | Title                                                        |
|--------|--------------------------------------------------------------|
| 216008 | Rehabilitation of Screened Final Effluent (SFE) Pump Station |
| 233003 | Rouge River In-system Storage Devices                        |
| 270001 | Pilot CSO Netting Facility                                   |
| 270002 | Meldrum Sewer Diversion and VR-15 Improvements               |



Finally, redundancy and reliability in the transmission system and wastewater facilities is of high importance to GLWA. The following projects will enhance the redundancy and/or reliability within the water transmission system or within the wastewater system:

Table IV-9 . Redundancy & Reliability Projects

| CIP    | Title                                                                                                             |  |
|--------|-------------------------------------------------------------------------------------------------------------------|--|
| 111001 | Lake Huron Water Treatment Plant, Low-Lift, High Lift and Filter Backwash Pumping System Improvements             |  |
| 111004 | Lake Huron Water Treatment Plant, Electrical Tunnel<br>Rehabilitation                                             |  |
| 111006 | Lake Huron Water Treatment Plant, Filter Instrumentation and Raw Water Flow Metering Improvements                 |  |
| 111009 | Lake Huron Water Treatment Plant - High Lift Pumping, Water Production Flow Metering and Yard Piping Improvements |  |
| 111010 | Lake Huron Water Treatment Plant -Filtration and Pretreatment Improvements                                        |  |
| 112003 | Northeast Water Treatment Plant High-Lift Pumping Station Improvements                                            |  |
| 114002 | Springwells Water Treatment Plant, Low-Lift and High-Lift Pumping Station Improvements                            |  |
| 114009 | SPW WTP Service Area Redundancy Study                                                                             |  |
| 114010 | Springwells Water Treatment Plant, Yard Piping and High-Lift<br>Header Improvements                               |  |
| 114013 | Springwells Water Treatment Plant, Reservoir Fill Line Improvements                                               |  |
| 115001 | Water Works Park Water Treatment Plant Yard Piping, Valves and Venturi Meters Replacement                         |  |
| 116002 | Pennsylvania and Springwells Raw Water Supply Tunnel Improvements                                                 |  |
| 122001 | Parallel 42-Inch Main in 24 Mile Road from Rochester Station to Romeo Plank Road                                  |  |
| 122002 | Replacement of Five (5) PRV Pits of Treated Water Transmission System                                             |  |
| 122003 | Water Works Park to Northeast Transmission Main                                                                   |  |
| 122004 | 96-inch Water Transmission Main Relocation and Isolation Valve Installations                                      |  |
| 122005 | Schoolcraft Road Water Transmission Main                                                                          |  |
| 122006 | Wick Road Water Transmission Main                                                                                 |  |

| CIP    | Title                                                                                                                                   |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------|
| 122007 | Merriman Road Water Transmission Main Loop                                                                                              |
| 122009 | Water System Improvements in Joy Road from Southfield Road to Trinity                                                                   |
| 122010 | Water Main Replacement within the City of Detroit - Joy Rd from<br>Greenfield to Schaefer and Davison Ave from Lindwood to<br>Livernois |
| 122011 | Park-Merriman Road Water Transmission Main                                                                                              |
| 122012 | 36-inch Water Main in Telegraph Road                                                                                                    |
| 122013 | 14 Mile Transmission Main Loop                                                                                                          |
| 122016 | Downriver Transmission Main Loop                                                                                                        |
| 122017 | 7 Mile/Nevada Transmission Main Rehab and Carrie/Nevada Flow Control Station                                                            |
| 122018 | Garland, Hurlbut, Bewick Water Transmission System<br>Rehabilitation                                                                    |
| 132003 | West Service Center Pumping Station, Isolation Gate Valves for Line Pumps                                                               |
| 132006 | Ford Road Pumping Station, Pressure and Control Improvements                                                                            |
| 132007 | Energy Management: Freeze Protection Pump Installation at Imlay Pump Station                                                            |
| 132008 | Various Pumping Stations - Needs Assessment Study                                                                                       |
| 132010 | West Service Center Pumping Station - Reservoir, Reservoir Pumping, and Division Valve Upgrades                                         |
| 132015 | Newburgh Road Booster Pumping Station Improvements                                                                                      |
| 132016 | North Service Center Pumping Station Improvements                                                                                       |
| 132018 | Schoolcraft Pumping Station Improvements                                                                                                |
| 132019 | Wick Road Pumping Station Improvements                                                                                                  |
| 132021 | Imlay Pumping Station Improvements                                                                                                      |
| 132022 | Joy Road Pumping Station Improvements                                                                                                   |
| 132025 | Northwest Booster Station Yard Piping Improvements                                                                                      |
| 170400 | Water Transmission Improvement Program Transmission System Valve Rehabilitation and Replacement                                         |
| 170500 | Program                                                                                                                                 |
| 170800 | System-Wide Finished Water Reservoir Inspection, Design and Rehabilitation                                                              |
| 211001 | WRRF Rehabilitation of Primary Clarifiers Rectangular Tanks,<br>Drain Lines, Electrical/Mechanical Building and Pipe Gallery            |
| 211002 | WRRF PS No. 2 Pumping Improvements - Phase 1                                                                                            |
| 211004 | WRRF PS #1 Rack & Grit and MPI Sampling Station 1 Improvements                                                                          |
| 211005 | WRRF PS No. 2 Improvements Phase II                                                                                                     |
| 211006 | WRRF PS No. 1 Improvements                                                                                                              |



II CIP DEVELOPMENT + PROCESS

III FINANCE

IV CIP SUMMARY

**V** PRIORITIZATION

VI PROJECTS BY CATEGORY VII TEN-YEAR OUTLOOK VIII PROJECT DESCRIPTIONS

IX GLOSSARY

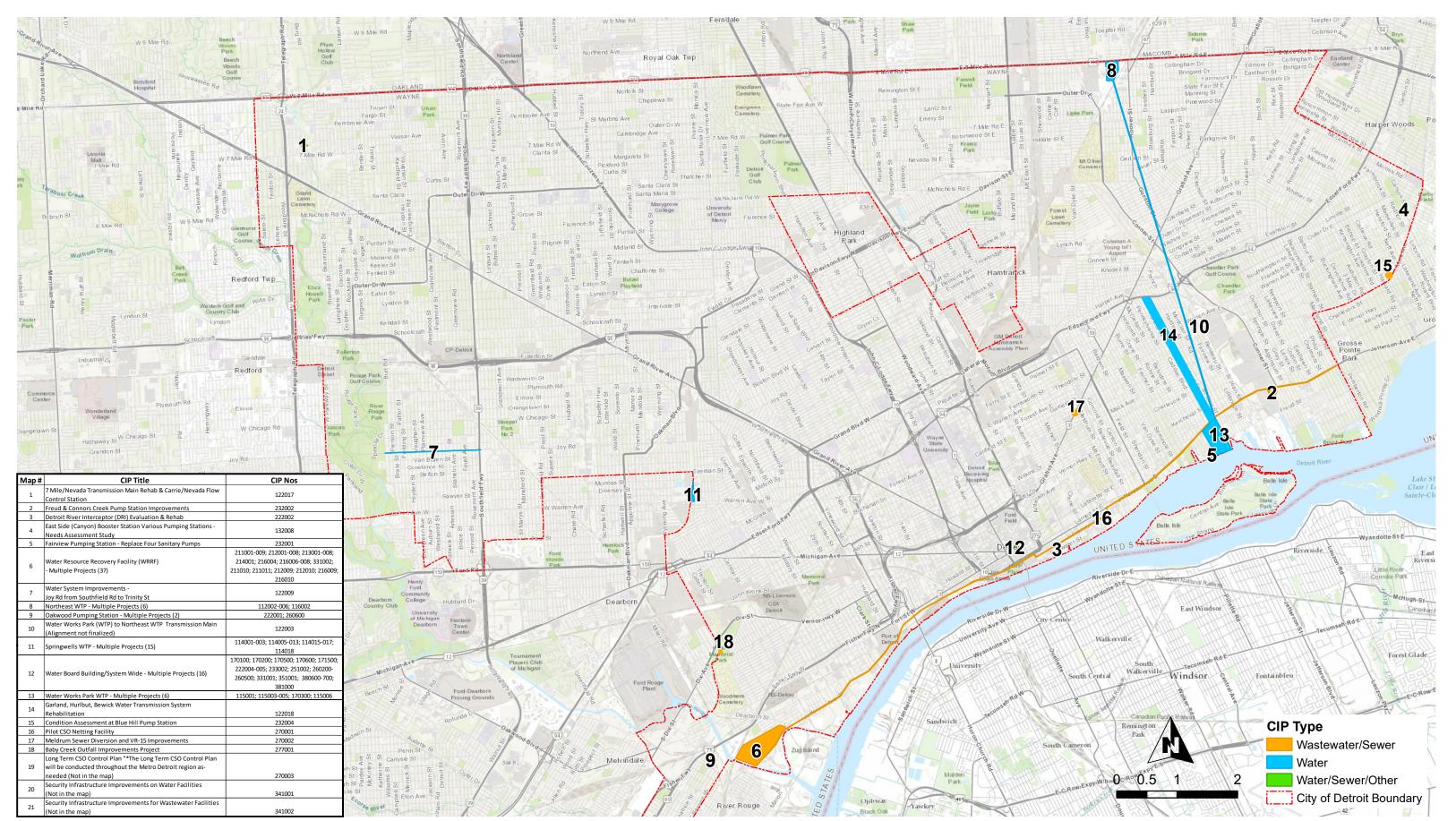
| CIP              | Title                                                                                                                          |
|------------------|--------------------------------------------------------------------------------------------------------------------------------|
|                  | WRRF PS #2 Bar Racks Replacements and Grit Collection System                                                                   |
| 211007           | Improvements                                                                                                                   |
| 211008           | WRRF Rehabilitation of Ferric Chloride Feed System in PS-1 and                                                                 |
|                  | Complex B Sludge Lines                                                                                                         |
| 211009           | WRRF Rehabilitation of the Circular Primary Clarifier Scum<br>Removal System                                                   |
| 211010           | Rehabilitation of Sludge Processing Complexes A and B                                                                          |
| 211011           | WRRF PS1 Screening and Grit Improvements                                                                                       |
| 212003           | WRRF Aeration System Improvements                                                                                              |
| 212004           | WRRF Chlorination and Dechlorination Process Equipment Improvements                                                            |
| 212006           | WRRF Rouge River Outfall (RRO) Disinfection (Alternative)                                                                      |
| 212007           | WRRF Rehabilitation of the Secondary Clarifiers                                                                                |
| 212008           | WRRF Aeration Improvements 1 and 2                                                                                             |
| 212009           | WRRF Aeration Improvements 3 and 4                                                                                             |
| 213002           | WRRF Rehabilitation of Central Offload Facility                                                                                |
| 213005           | WRRF Complex I Incinerators Decommissioning and Reusability                                                                    |
| 213006           | WRRF Improvements to Sludge Feed Pumps at Dewatering Facilities                                                                |
|                  | WRRF Modification to Incinerator Sludge Feed Systems at                                                                        |
| 213007           | Complex -II                                                                                                                    |
| 213008           | WRRF Rehabilitation of the Ash Handling Systems                                                                                |
| 214001<br>216004 | WRRF Relocation of Industrial Waste Control Division and                                                                       |
|                  | Analytical Laboratory Operations                                                                                               |
|                  | Rehabilitation of Various Sampling Sites and PS#2 Ferric Chloride<br>System at WRRF                                            |
|                  | Assessment and Rehabilitation of WRRF yard piping and                                                                          |
| 216006           | underground utilities                                                                                                          |
| 216007           | DTE Primary Electric 3rd Feed Supply to WRRF                                                                                   |
| 222001           | Oakwood District Intercommunity Relief Sewer Modification at<br>Oakwood District                                               |
| 222002           |                                                                                                                                |
| 222002<br>222003 | Detroit River Interceptor (DRI) Evaluation and Rehabilitation  North Interceptor East Arm (NIEA) Evaluation and Rehabilitation |
| 222007           | NIEA Rehabilitation from WRRF to Gratiot Ave. and Sylvester St.                                                                |
| 232001           | Fairview Pumping Station - Replace Four Sanitary Pumps                                                                         |
| 232001           | Freud & Conner Creek Pump Station Improvements                                                                                 |
| 232002           | Northeast Pumping Station                                                                                                      |
| 232004           | Condition Assessment at Blue Hill Pump Station                                                                                 |
|                  | WRRF, Lift Station and Wastewater Collection System Structures                                                                 |
| 260100           | Allowance                                                                                                                      |
| 260200           | Sewer and Interceptor Rehabilitation Program                                                                                   |

| CIP    | Title                                                                                                                            |
|--------|----------------------------------------------------------------------------------------------------------------------------------|
| 260500 | CSO Outfall Rehabilitation                                                                                                       |
| 260600 | CSO Facilities Improvement Program                                                                                               |
| 270002 | Meldrum Sewer Diversion and VR-15 Improvements                                                                                   |
| 331002 | Roofing Systems Replacement at GLWA WRRF, CSO Retention<br>Treatment Basins (RTB) and Screening Disinfection Facilities<br>(SDF) |
| 381000 | Power Quality: Electric Metering Improvement Program                                                                             |

# Northeast Water Treatment Plant Repurposing **Related Projects**

The 2015 Comprehensive Water Master Plan has identified the ability to reduce the number of water treatment facilities in full operation at GLWA. Initially, for long-term capital expenditure avoidance, the plan has identified the repurposing of the Northeast Water Treatment Plant. In order to repurpose this facility into a reservoir and pump station, several capital projects are necessary to achieve the savings identified in the master plan. The following projects are associated with the repurposing of the Northeast Water Treatment Plant:

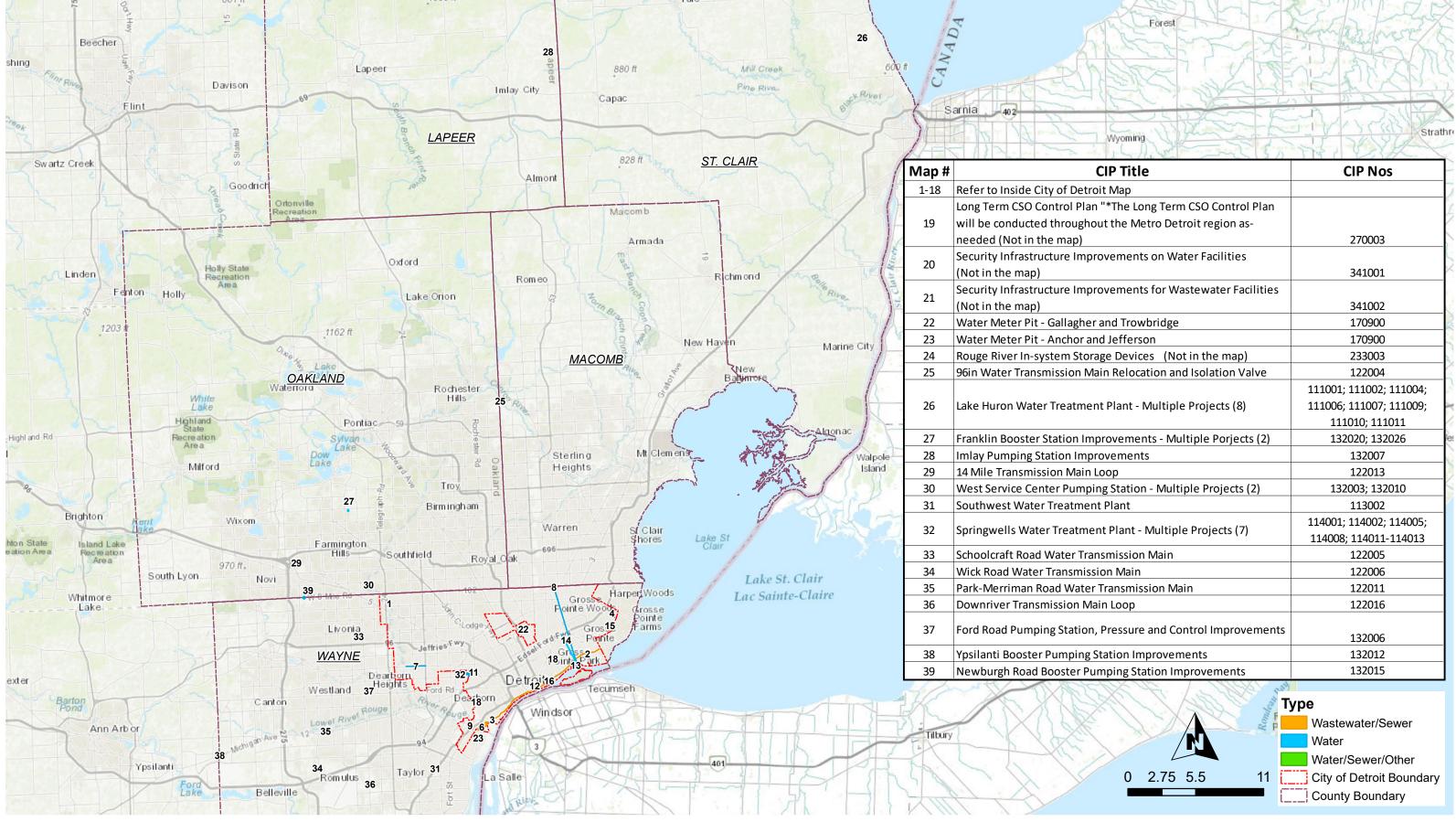
Table IV-10. Northeast Water Treatment Plant Repurposing **Related Projects** 


| CIP    | Title                                                                                     |
|--------|-------------------------------------------------------------------------------------------|
| 112003 | Northeast Water Treatment Plant High-Lift Pumping Station Improvements                    |
| 114002 | Springwells Water Treatment Plant, Low-Lift and High-Lift Pumping Station Improvements    |
| 114013 | Springwells Water Treatment Plant, Reservoir Fill Line Improvements                       |
| 115001 | Water Works Park Water Treatment Plant Yard Piping, Valves and Venturi Meters Replacement |
| 122003 | Water Works Park to Northeast Transmission Main                                           |
| 122018 | Garland, Hurlbut, Bewick Water Transmission System Rehabilitation                         |
| 132025 | Northwest Booster Station Yard Piping Improvements                                        |

#### **Projects by Jurisdiction** 2.5.

Projects are listed below under the jurisdiction of the physical location of the project. Because many projects are planned for multiple facilities within multiple jurisdictions, many of these projects are identified as "Multiple Counties". In addition, to get a spatial view and understanding of these project locations, approximately one month after the CIP has been officially adopted by the Board, these projects and the associated BCE information will be shown in the CIP Viewer located within the WAMR and **GDRSS Member Outreach Portals.** 

Table IV-11. Projects by Physical Jurisdiction


| Inviadiation   |             |         | CID Duois at |          |        |
|----------------|-------------|---------|--------------|----------|--------|
| Jurisdiction   |             |         | CIP Projects | S        |        |
| City of Detroi |             | 044006  | 040000       | 04.600.6 | 22224  |
| 112002         | 122003      | 211006  | 212008       | 216006   | 232004 |
| 112003         | 122009      | 211007  | 212009       | 216007   | 233003 |
| 112005         | 122010      | 211008  | 212010       | 216008   | 270001 |
| 112006         | 122017      | 211009  | 213002       | 216009   | 270002 |
| 115001         | 122018      | 211010  | 213005       | 216010   |        |
| 115003         | 132025      | 211011  | 213006       | 222002   |        |
| 115004         | 211001      | 212003  | 213007       | 222007   |        |
| 115005         | 211002      | 212004  | 213008       | 232001   |        |
| 115006         | 211004      | 212006  | 214001       | 232002   |        |
| 116002         | 211005      | 212007  | 216004       | 232003   |        |
| Lapeer Count   | ty          |         |              |          |        |
| 132007         | 132021      |         |              |          |        |
| Macomb Cou     | nty         |         |              |          |        |
| 122001         |             |         |              |          |        |
| Oakland Cou    | nty         |         |              |          |        |
| 122013         | 132004      | 132014  | 132016       | 132020   | 132003 |
| 132010         | 132026      |         |              |          |        |
| Saint Clair Co | unty        |         |              |          |        |
| 111001         | 111004      | 111007  | 111009       | 111011   |        |
| 111002         | 111006      | 111008  | 111010       |          |        |
| Wayne Count    | y - Outside | Detroit |              |          |        |
| 113002         | 114002      | 114010  | 114017       | 122012   | 132018 |
| 113003         | 114005      | 114011  | 114018       | 122016   | 132019 |
| 113004         | 114006      | 114012  | 122005       | 132001   | 132022 |
| 113006         | 114007      | 114013  | 122006       | 132006   |        |
| 113007         | 114008      | 114015  | 122007       | 132012   |        |
| 114001         | 114009      | 114016  | 122011       | 132015   |        |
| Multiple Cou   | nties       |         |              |          |        |
| 114003         | 170300      | 171400  | 260200       | 331002   | 380600 |
| 122002         | 170400      | 171500  | 260500       | 341001   | 380700 |
| 122004         | 170500      | 222001  | 260600       | 341002   | 380800 |
| 132008         | 170600      | 222003  | 270003       | 351001   | 380900 |
| 170100         | 170800      | 222004  | 277001       | 380400   | 381000 |
| 170200         | 170900      | 260100  | 331001       | 380500   |        |
|                |             |         |              |          |        |





# CURRENT GLWA 2019-23 (FY 2021-25) CIP PROJECTS - INSIDE CITY OF DETROIT

**Notes:** Projects depicted on this map are based on the best available data at this time. They may not be completely accurate including spatial representations, leased statuses or attribute values. The user accepts responsibility for accuracy of any referenced information, spatial or otherwise.





# **CURRENT GLWA 2019-23 (FY 2021-25) CIP PROJECTS - ALL COUNTIES**

**Notes:** Projects depicted on this map are based on the best available data at this time. They may not be completely accurate including spatial representations, leased statuses or attribute values. The user accepts responsibility for accuracy of any referenced information, spatial or otherwise.



OVERVIEV

II CIP DEVELOPMENT
+ PROCESS

III FINANCE



V PRIORITIZATION

VI PROJECTS BY CATEGORY VII TEN-YEAR OUTLOOK VIII PROJECT DESCRIPTIONS

IX GLOSSARY

# SECTION 3 5-YEAR CIP SUMMARY TABLES

The Great Lakes Water Authority 2021-2025 Capital Improvement Plan overall summary tables can be seen below. Please note that projected expenses and project categories shown in Table IV-14 (Centralized Services) are also included in Table IV-12. Water CIP Categories and Table IV-13. Wastewater CIP Categories.

**Table IV-12. Water CIP Categories** 

Financial figures are in thousands of dollars (\$1,000's).

| Category                               | Category<br>Number | Lifetime<br>Actual Thru<br>FY 2019<br>(Unaudited) | FY 2020   | FY 2021  | FY 2022  | FY 2023   | FY 2024   | FY 2025   | FY 2026 &<br>Beyond | 2021-2025<br>CIP Total | Project Total |
|----------------------------------------|--------------------|---------------------------------------------------|-----------|----------|----------|-----------|-----------|-----------|---------------------|------------------------|---------------|
| Water                                  |                    |                                                   |           |          |          |           |           |           |                     |                        |               |
| Treatment Plants & Facilitie           | es                 |                                                   |           |          |          |           |           |           |                     |                        |               |
| Lake Huron                             | 111                | \$ 11,226                                         | \$ 10,260 | \$ 7,160 | \$ 5,538 | \$ 25,046 | \$ 29,525 | \$ 23,203 | \$ 19,786           | \$ 90,472              | \$ 131,744    |
| Northeast                              | 112                | 1,152                                             | 939       | 3,869    | 3,040    | 889       | 1,228     | 2,383     | 53,914              | 11,409                 | 67,414        |
| Southwest                              | 113                | 3,266                                             | 2,348     | 1,354    | 2,238    | 2,238     | 17        | 0         | 14,412              | 5,847                  | 25,873        |
| Springwells                            | 114                | 118,841                                           | 23,861    | 28,653   | 25,132   | 25,403    | 34,174    | 31,213    | 187,652             | 144,575                | 474,929       |
| Water Works Park                       | 115                | 8,960                                             | 2,687     | 7,461    | 16,959   | 24,017    | 21,262    | 8,836     | 5,643               | 78,535                 | 95,825        |
| General Purpose                        | 116                | 10,200                                            | 653       | 14,138   | 21,917   | 8,810     | 5,527     | 0         | 0                   | 50,392                 | 61,245        |
| <b>Treatment Plants &amp; Faciliti</b> | es Total           | 153,645                                           | 40,748    | 62,635   | 74,824   | 86,403    | 91,733    | 65,635    | 281,407             | 381,230                | 857,030       |
| Field Services                         |                    |                                                   |           |          |          |           |           |           |                     |                        |               |
| General Purpose                        | 121                | -                                                 | -         | -        | -        | -         | -         | -         | -                   | -                      | -             |
| Transmission System                    | 122                | 52,751                                            | 23,057    | 48,702   | 67,859   | 75,612    | 75,075    | 78,580    | 213,270             | 345,828                | 634,906       |
| Field Services Total                   |                    | 52,751                                            | 23,057    | 48,702   | 67,859   | 75,612    | 75,075    | 78,580    | 213,270             | 345,828                | 634,906       |
| SCC                                    |                    |                                                   |           |          |          |           |           |           |                     |                        |               |
| General Purpose                        | 131                | -                                                 | -         | -        | -        | -         | -         | -         | -                   | -                      | -             |
| Pump Station/Reservoir                 | 132                | 3,150                                             | 5,792     | 12,018   | 16,185   | 21,196    | 26,958    | 23,841    | 83,244              | 100,198                | 192,384       |
| SCC Total                              |                    | 3,150                                             | 5,792     | 12,018   | 16,185   | 21,196    | 26,958    | 23,841    | 83,244              | 100,198                | 192,384       |
| Water Quality                          |                    |                                                   |           |          |          |           |           |           |                     |                        |               |
| General Purpose                        | 141                | -                                                 | -         | -        | -        | -         | -         | -         | -                   | -                      | -             |
| Water Quality Total                    |                    | -                                                 | -         | -        | -        | -         | -         | -         | -                   | -                      | -             |
| Metering                               |                    |                                                   |           |          |          |           |           |           |                     |                        |               |
| General Purpose                        | 151                | -                                                 | -         | -        | -        | -         | -         | -         | -                   | -                      | -             |
| Metering Total                         |                    | -                                                 | -         | -        | -        | -         | -         | -         | -                   | -                      | -             |
| General Purpose                        |                    |                                                   |           |          |          |           |           |           |                     |                        |               |
| General Purpose                        | 161                | -                                                 | -         | -        | -        | -         | -         | -         | -                   | -                      | -             |
| General Purpose Total                  |                    | -                                                 |           | -        | -        | -         | -         | -         | -                   | -                      | -             |
| Programs                               |                    |                                                   |           |          |          |           | <u>.</u>  |           |                     |                        |               |
| Programs                               | 170                | 22,037                                            | 16,085    | 19,426   | 18,199   | 18,429    | 19,001    | 24,683    | 131,276             | 99,738                 | 269,136       |

II CIP DEVELOPMENT III FINANCE +PROCESS



**V** PRIORITIZATION

VI PROJECTS BY CATEGORY VII TEN-YEAR OUTLOOK

VIII PROJECT DESCRIPTIONS

IX GLOSSARY

| Category                          | Category<br>Number | Lifetime<br>Actual Thru<br>FY 2019<br>(Unaudited) | FY 2020 | FY 2021 | FY 2022 | FY 2023 | FY 2024 | FY 2025 | FY 2026 &<br>Beyond | 2021-2025<br>CIP Total | Project Total |
|-----------------------------------|--------------------|---------------------------------------------------|---------|---------|---------|---------|---------|---------|---------------------|------------------------|---------------|
| Programs Total                    |                    | 22,037                                            | 16,085  | 19,426  | 18,199  | 18,429  | 19,001  | 24,683  | 131,276             | 99,738                 | 269,136       |
| Water Total                       |                    | 231,583                                           | 85,682  | 142,781 | 177,067 | 201,640 | 212,767 | 192,739 | 709,197             | 926,994                | 1,953,456     |
| Water Central Services            |                    |                                                   |         |         |         |         |         |         |                     |                        |               |
| Information Technology            | 31X                | -                                                 | -       | -       | -       | -       | -       | -       | -                   | -                      | -             |
| Fleet                             | 32X                | -                                                 | -       | -       | -       | -       | -       | -       | -                   | -                      | -             |
| Facilities                        | 33X                | -                                                 | -       | -       | -       | -       | -       | -       | -                   | -                      | -             |
| Security                          | 34X                | -                                                 | 4,029   | 4,018   | 2,603   | -       | -       | -       | -                   | 6,621                  | 10,650        |
| Energy Management                 | 35X                | 6                                                 | -       | 50      | 248     | 252     | -       | -       | -                   | 550                    | 556           |
| Engineering                       | 36X                | -                                                 | -       | -       | -       | -       | -       | -       | -                   | -                      | -             |
| General Purpose                   | 371                | -                                                 | -       | -       | -       | -       | -       | -       | -                   | -                      | -             |
| Programs                          | 38XX               | 56                                                | 1,415   | 715     | -       | -       | 86      | 445     | 2,904               | 1,246                  | 5,621         |
| <b>Water Central Services Tot</b> | al                 | 62                                                | 5,444   | 4,783   | 2,851   | 252     | 86      | 445     | 2,904               | 8,417                  | 16,827        |
| <b>Grand Total</b>                |                    | 231,645                                           | 91,126  | 147,564 | 179,918 | 201,892 | 212,853 | 193,184 | 712,101             | 935,411                | 1,970,283     |

**Table IV-13. Wastewater CIP Categories** 

Financial figures are in thousands of dollars (\$1,000's).

| Category<br>Wastewater             | Category<br>Number | Lifetime<br>Actual Thru<br>FY 2019<br>(Unaudited) | FY 2020   | FY 2021   | FY 2022   | FY 2023   | FY 2024   | FY 2025   | FY 2026 &<br>Beyond | 2021-2025<br>CIP Total | Project Total |
|------------------------------------|--------------------|---------------------------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|---------------------|------------------------|---------------|
| WRRF                               |                    |                                                   |           |           |           |           |           |           |                     |                        |               |
| Primary Treatment                  | 211                | \$ 73,669                                         | \$ 12,301 | \$ 13,353 | \$ 13,237 | \$ 11,925 | \$ 44,809 | \$ 41,230 | \$ 152,872          | \$ 124,554             | \$ 363,396    |
| Secondary Treatment & Disinfection | 212                | 58,238                                            | 6,793     | 6,462     | 7,992     | 8,046     | 41,517    | 15,896    | 113,158             | 79,913                 | 258,102       |
| Residuals Management               | 213                | 9,357                                             | 8,502     | 3,770     | 1,021     | 14,432    | 6,058     | 0         | 0                   | 25,281                 | 43,140        |
| IWC                                | 214                | 2,301                                             | 10,369    | 1,331     | 0         | 0         | 0         | 0         | 0                   | 1,331                  | 14,001        |
| CSO RTB & SDF                      | 215                | -                                                 | -         | -         | -         | -         | -         | -         | -                   | -                      | -             |
| General Purpose                    | 216                | 1,556                                             | 7,642     | 8,516     | 9,084     | 22,282    | 18,690    | 6,081     | 273                 | 64,653                 | 74,124        |
| WRRF Total                         |                    | 145,121                                           | 45,607    | 33,432    | 31,334    | 56,685    | 111,074   | 63,207    | 266,303             | 295,732                | 752,763       |
| Field Services                     |                    |                                                   |           |           |           |           |           |           |                     |                        |               |
| General Purpose                    | 221                | -                                                 | -         | -         | -         | -         | -         | -         | -                   | -                      | -             |
| Interceptors                       | 222                | 10,596                                            | 17,658    | 27,310    | 18,347    | 21,270    | 31,112    | 26,704    | 23,317              | 124,743                | 176,314       |
| Field Services Total               |                    | 10,596                                            | 17,658    | 27,310    | 18,347    | 21,270    | 31,112    | 26,704    | 23,317              | 124,743                | 176,314       |



II CIP DEVELOPMENT + PROCESS

III FINANCE

IV CIP SUMMARY

**V** PRIORITIZATION

**VI PROJECTS** BY CATEGORY VII TEN-YEAR OUTLOOK

VIII PROJECT DESCRIPTIONS

IX GLOSSARY

| Category                    | Category | Lifetime<br>Actual Thru<br>FY 2019<br>(Unaudited) | FY 2020 | FY 2021 | FY 2022 | FY 2023 | FY 2024 | FY 2025 | FY 2026 &<br>Beyond | 2021-2025<br>CIP Total | Project Total |
|-----------------------------|----------|---------------------------------------------------|---------|---------|---------|---------|---------|---------|---------------------|------------------------|---------------|
| SCC                         |          |                                                   |         |         |         |         |         |         |                     |                        |               |
| General Purpose             | 231      | -                                                 | -       | -       | -       | -       | -       | -       | -                   | -                      | -             |
| Pumping Stations            | 232      | 9,035                                             | 34,916  | 12,067  | 1,041   | 9,898   | 23,830  | 30,803  | 138,071             | 77,639                 | 259,661       |
| In System Devices           | 233      | -                                                 | -       | -       | 32      | 86      | 3,374   | 1,984   | 41,321              | 5,476                  | 46,797        |
| SCC Total                   |          | 9,035                                             | 34,916  | 12,067  | 1,073   | 9,984   | 27,204  | 32,787  | 179,392             | 83,115                 | 306,458       |
| Metering                    |          |                                                   |         |         |         |         |         |         |                     |                        |               |
| General Purpose             | 241      | -                                                 | -       | -       | -       | -       | -       | -       | -                   | -                      | -             |
| Metering Total              | •        | -                                                 | -       | -       | -       | -       | -       | -       | -                   | -                      | -             |
| General Purpose             |          |                                                   | ,       |         |         |         |         |         |                     |                        |               |
| General Purpose             | 251      | -                                                 | -       | -       | -       | -       | -       | -       | -                   | -                      | -             |
| General Purpose Total       |          | -                                                 | -       | -       | -       | -       | -       | -       | -                   | -                      | -             |
| Programs                    |          |                                                   | ,       |         |         |         |         |         |                     |                        |               |
| Programs                    | 260      | 28,710                                            | 31,386  | 32,174  | 55,492  | 47,443  | 31,230  | 42,870  | 102,687             | 209,209                | 371,992       |
| Programs Total              |          | 28,710                                            | 31,386  | 32,174  | 55,492  | 47,443  | 31,230  | 42,870  | 102,687             | 209,209                | 371,992       |
| CSO Facilities              |          |                                                   |         |         |         |         |         |         |                     |                        |               |
| CSO Facilities              | 27X      | 0                                                 | 147     | 4,067   | 3,226   | 2,400   | 904     | 4,669   | 6,466               | 15,266                 | 21,879        |
| CSO Facilities Total        |          | 0                                                 | 147     | 4,067   | 3,226   | 2,400   | 904     | 4,669   | 6,466               | 15,266                 | 21,879        |
| Wastewater Total            |          | 193,462                                           | 129,714 | 109,050 | 109,472 | 137,782 | 201,524 | 170,237 | 578,165             | 728,065                | 1,629,406     |
| Wastewater Central Services |          |                                                   |         |         |         |         |         |         |                     | · · ·                  |               |
| Information Technology      | 31X      | -                                                 | -       | -       | -       | -       | -       | -       | -                   | -                      | -             |
| Fleet                       | 32X      | -                                                 | -       | -       | -       | -       | -       | -       | -                   | -                      | -             |
| Facilities                  | 33X      | 802                                               | 321     | 91      | 1,745   | 1,724   | 1,708   | 1,702   | 1,652               | 6,970                  | 9,745         |
| Security                    | 34X      | 0                                                 | 1,579   | 1,051   | 0       | 0       | 0       | 0       | 0                   | 1,051                  | 2,630         |
| Energy Management           | 35X      | -                                                 | -       | -       | -       | -       | -       | -       | -                   | -                      | -             |
| Engineering                 | 36X      | -                                                 | -       | -       | -       | -       | -       | -       | -                   | -                      | -             |
| General Purpose             | 37X      | -                                                 | -       | -       | -       | -       | -       | -       | -                   | -                      | -             |
| Programs                    | 38XX     | -51                                               | 86      | 446     | 1,540   | 1,337   | 26      | 0       | 0                   | 3,349                  | 3,384         |
| Central Services Total      |          | 751                                               | 1,986   | 1,588   | 3,285   | 3,061   | 1,734   | 1,702   | 1,652               | 11,370                 | 15,759        |
| Grand Total                 |          | 194,213                                           | 131,700 | 110,638 | 112,757 | 140,843 | 203,258 | 171,939 | 579,817             | 739,435                | 1,645,165     |



# PROCESS

III FINANCE



**V** PRIORITIZATION

VI PROJECTS BY CATEGORY VII TEN-YEAR OUTLOOK VIII PROJECT DESCRIPTIONS

IX GLOSSARY

# **Table IV-14. Centralized Services Categories**

Please note that these project categories and projected expenses also appear in Water and Wastewater tables, Table IV-12 and Table IV-13, respectively. Financial figures are in thousands of dollars (\$1,000's).

| Category                            | Category<br>Number | Lifetime<br>Actual Thru<br>FY 2019<br>(Unaudited) | FY 2020 | FY 2021 | FY 2022 | FY 2023 | FY 2024 | FY 2025 | FY 2026 &<br>Beyond | 2021-2025<br>CIP Total | Project Total |
|-------------------------------------|--------------------|---------------------------------------------------|---------|---------|---------|---------|---------|---------|---------------------|------------------------|---------------|
| Information Technology              | 31X                |                                                   |         |         |         |         |         |         |                     |                        |               |
| Water                               |                    | \$-                                               | \$-     | \$-     | \$-     | \$-     | \$-     | \$-     | \$-                 | \$-                    | \$-           |
| Wastewater                          |                    | -                                                 | -       | -       | -       | -       | -       | -       | -                   | -                      | -             |
| <b>Information Technology Total</b> |                    | -                                                 | -       | -       | -       | -       | -       | -       | -                   | -                      | -             |
| Fleet                               | 32X                |                                                   |         |         |         |         |         |         |                     |                        |               |
| Water                               |                    | -                                                 | -       | -       | -       | -       | -       | -       | -                   | -                      | -             |
| Wastewater                          |                    | -                                                 | -       | -       | -       | -       | -       | -       | -                   | -                      | -             |
| Fleet Total                         |                    | -                                                 | -       | -       | -       | -       | -       | -       | -                   | -                      | -             |
| Facilities                          | 33X                |                                                   |         |         |         |         |         |         |                     |                        |               |
| Water                               |                    | -                                                 | -       | -       | -       | -       | -       | -       | -                   | -                      | -             |
| Wastewater                          |                    | 802                                               | 321     | 91      | 1,745   | 1,724   | 1,708   | 1,702   | 1,652               | 6,970                  | 9,745         |
| <b>Facilities Total</b>             |                    | 802                                               | 321     | 91      | 1,745   | 1,724   | 1,708   | 1,702   | 1,652               | 6,970                  | 9,745         |
| Security                            | 34X                |                                                   |         |         |         |         |         |         |                     |                        |               |
| Water                               |                    | -                                                 | 4,029   | 4,018   | 2,603   | -       | -       | -       | -                   | 6,621                  | 10,650        |
| Wastewater                          |                    | -                                                 | 1,579   | 1,051   | -       | -       | -       | -       | -                   | 1,051                  | 2,630         |
| Security Total                      |                    | -                                                 | 5,608   | 5,069   | 2,603   | -       | -       | -       | -                   | 7,672                  | 13,280        |
| Energy Management                   | 35X                |                                                   |         |         |         |         |         |         |                     |                        |               |
| Water                               |                    | 6                                                 | -       | 50      | 248     | 252     | -       | -       | -                   | 550                    | 556           |
| Wastewater                          |                    | -                                                 | -       | -       | -       | -       | -       | -       | -                   | -                      | -             |
| <b>Energy Management Total</b>      |                    | 6                                                 | -       | 50      | 248     | 252     | -       | -       | -                   | 550                    | 556           |
| Engineering                         | 36X                |                                                   |         |         |         |         |         |         |                     |                        |               |
| Water                               |                    | -                                                 | -       | -       | -       | -       | -       | -       | -                   | -                      | -             |
| Wastewater                          |                    | -                                                 | -       | -       | -       | -       | -       | -       | -                   | -                      | -             |
| <b>Engineering Total</b>            |                    | -                                                 | -       | -       | -       | -       | -       | -       | -                   | -                      | -             |
| General Purpose                     | 37X                |                                                   |         |         |         |         |         |         |                     |                        |               |
| Water                               |                    | -                                                 | -       | -       | -       | -       | -       | -       | -                   | -                      | -             |
| Wastewater                          |                    | -                                                 | -       | -       | -       | -       | -       | -       | -                   | -                      | -             |
| General Purpose Total               |                    | -                                                 | -       | -       | -       | -       | -       | -       | -                   | -                      | -             |
| Programs                            | 38XX               |                                                   |         |         |         |         |         |         |                     |                        |               |



I OVERVIEW

/ 11

II CIP DEVELOPMENT + PROCESS

III FINANCE

IV CIP SUMMARY

**V** PRIORITIZATION

VI PROJECTS BY CATEGORY VII TEN-YEAR OUTLOOK VIII PROJECT DESCRIPTIONS

IX GLOSSARY

| Category<br>Number           | Lifetime<br>Actual Thru<br>FY 2019<br>(Unaudited) | FY 2020 | FY 2021 | FY 2022 | FY 2023 | FY 2024 | FY 2025 | FY 2026 &<br>Beyond | 2021-2025<br>CIP Total | Project Total |
|------------------------------|---------------------------------------------------|---------|---------|---------|---------|---------|---------|---------------------|------------------------|---------------|
| Water                        | 56                                                | 1,415   | 715     | 0       | 0       | 86      | 445     | 2,904               | 1,247                  | 5,621         |
| Wastewater                   | -51                                               | 86      | 446     | 1,540   | 1,337   | 26      | 0       | 0                   | 3,348                  | 3,384         |
| <b>General Purpose Total</b> | 5                                                 | 1,501   | 1,161   | 1,540   | 1,337   | 112     | 445     | 2,904               | 4,595                  | 9,005         |
| <b>Grand Total</b>           | 813                                               | 7,430   | 6,371   | 6,136   | 3,313   | 1,820   | 2,147   | 4,556               | 19,787                 | 32,586        |

+ PROCESS

# V. PROJECT PRIORITIZATION AND RISK EVALUATION

New and Future Planned water and wastewater projects were prioritized based upon eight criteria. The criteria and their weighting factors are identified in Table V-1.

Figure I-1 and Figure I-2 display the distribution of project risk in terms of Probability and Consequence. For the Probability of Failure coordinate on the plot, an equally weighted average was taken of the scores for the Condition, Performance, and O&M criteria. For the Consequence of Failure coordinate, the Regulatory, Public Health & Safety, Public Benefit, Financial, and Efficiency & Innovation criteria were averaged. These plots provide the reader a better understanding of which function (probability or consequence of failure) of the overall risk is driving the need for the project.

In addition, the following pages provide the detailed prioritization of each project compared to one another along with the individual score by Project Manager and by the Review Committee.

Table V-1. Project Prioritization

| No. | Weight | Criteria                                | Risk Factor |
|-----|--------|-----------------------------------------|-------------|
| 1   | 12%    | Condition                               | Probability |
| 2   | 15%    | Performance (Service Level/Reliability) | Probability |
| 3   | 18%    | Regulatory<br>(Environmental/Legal)     | Consequence |
| 4   | 11%    | 0&M                                     | Probability |
| 5   | 17%    | Public Health & Safety                  | Consequence |
| 6   | 8%     | Public Benefit                          | Consequence |
| 7   | 10%    | Financial                               | Consequence |
| 8   | 9%     | Efficiency & Innovation                 | Consequence |

# Water Risk of Future Planned Projects

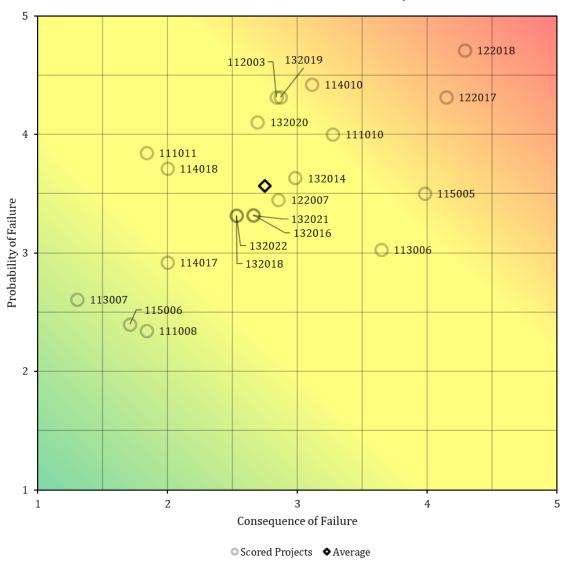



Figure I-1. Water Project Risk Matrix

# Wastewater Risk of Future Planned Projects

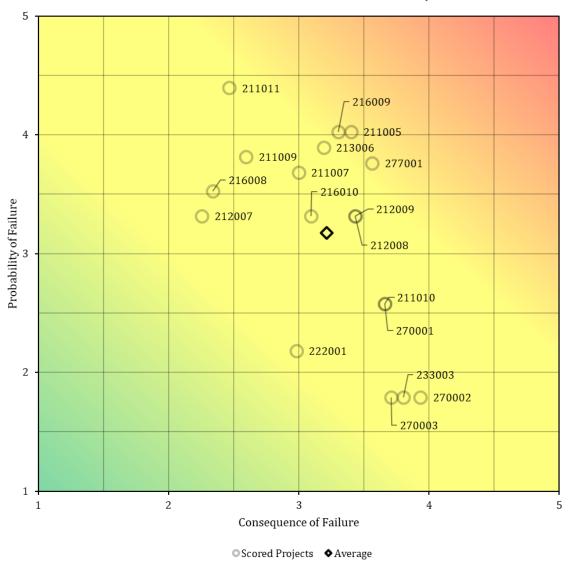



Figure I-2. Wastewater Project Risk Matrix



+ PROCESS

III FINANCE

IV CIP SUMMARY ATION VI PROJECTS
BY CATEGORY

VII TEN-YEAR OUTLOOK VIII PROJECT DESCRIPTIONS

IX GLOSSARY

# SECTION 2 PROJECT MANAGER CRITERIA SCORES: WATER

| Rank | CIP No. | Title                                                                      | (      | 20 | 40 | 60 | 80     | 100               |
|------|---------|----------------------------------------------------------------------------|--------|----|----|----|--------|-------------------|
| 1    | 122018  | Garland, Hurlbut, Bewick Water Transmission System Rehabilitation          | 122018 |    |    |    |        |                   |
| 2    | 122017  | 7 Mile/Nevada Transmission Main Rehab and Carrie/Nevada Flow Control       | 122017 |    |    |    |        |                   |
| 3    | 115005  | WWP WTP Building Ventilation Improvements                                  | 115005 |    |    |    |        |                   |
| 4    | 114010  | Springwells Water Treatment Plant, Yard Piping and High-Lift Header        | 114010 |    |    |    |        |                   |
| 5    | 111010  | Lake Huron Water Treatment Plant -Filtration and Pretreatment              | 111010 |    |    |    |        |                   |
| 6    | 132019  | Wick Road Pumping Station Improvements                                     | 132019 |    |    |    |        |                   |
| 7    | 113006  | Southwest Water Treatment Plant Chlorine Scrubber, Raw Water Screens &     | 113006 |    |    |    | ■ RC S | core              |
| 8    | 112003  | Northeast Water Treatment Plant High-Lift Pumping Station Improvements     | 112003 |    |    |    |        |                   |
| 9    | 132014  | Adams Road Pumping Station Improvements                                    | 132014 |    |    |    |        |                   |
| 10   | 132020  | Franklin Pumping Station Improvements                                      | 132020 |    |    |    | ■ PM S | Score             |
| 11   | 122007  | Merriman Road Water Transmission Main Loop                                 | 122007 |    |    |    |        |                   |
| 12   | 132016  | North Service Center Pumping Station Improvements                          | 132016 |    |    |    |        |                   |
| 13   | 132021  | Imlay Pumping Station Improvements                                         | 132021 |    |    |    |        | core and<br>Score |
| 14   | 132022  | Joy Road Pumping Station Improvements                                      | 132022 |    |    |    | over   |                   |
| 15   | 132018  | Schoolcraft Pumping Station Improvements                                   | 132018 |    |    |    |        |                   |
| 16   | 114018  | Springwells Water Treatment Plant - Service Building Electrical Substation | 114018 |    |    |    |        |                   |
| 17   | 111011  | Lake Huron WTP Pilot Plant                                                 | 111011 |    |    |    |        |                   |
| 18   | 113003  | Southwest Water Treatment Plant, Low- and High-Lift Pumping Station,       | 113003 |    |    |    |        |                   |
| 19   | 114017  | Springwells Water Treatment Plant Flocculator Drive Replacements           | 114017 |    |    |    |        |                   |
| 20   | 111008  | Lake Huron Water Treatment Plant, Architectural Programming for            | 111008 |    |    |    |        |                   |
| 21   | 115006  | Water Works Park Site/Civil Improvements                                   | 115006 |    |    |    |        |                   |
| 22   | 113007  | Southwest Water Treatment Plant Architectural and Building Mechanical      | 113007 |    |    |    |        |                   |



+ PROCESS

III FINANCE

IV CIP SUMMARY ZATION VI PROJECTS
BY CATEGORY

VII

VII TEN-YEAR VIII PROJECT OUTLOOK DESCRIPTIONS

IX GLOSSARY

# SECTION 3 PROJECT MANAGER CRITERIA SCORES: WATER

| Rank | CIP No. | Title                                                             | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | PM<br>Score | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | RC<br>Score |
|------|---------|-------------------------------------------------------------------|---|---|---|---|---|---|---|---|-------------|---|---|---|---|---|---|---|---|-------------|
| 1    | 122018  | Garland, Hurlbut, Bewick Water Transmission System Rehabilitation | 5 | 5 | 4 | 5 | 5 | 5 | 5 | 4 | 94.6        | 5 | 5 | 4 | 4 | 4 | 5 | 5 | 4 | 89          |
| 2    | 122017  | 7 Mile/Nevada Transmission Main Rehab and Carrie/Nevada Flow      | 5 | 5 | 4 | 5 | 4 | 4 | 4 | 4 | 87.6        | 5 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 84.2        |
| 3    | 115005  | WWP WTP Building Ventilation Improvements                         | 4 | 5 | 5 | 4 | 5 | 4 | 3 | 2 | 84.4        | 3 | 5 | 5 | 2 | 5 | 3 | 3 | 2 | 76          |
| 4    | 114010  | Springwells Water Treatment Plant, Yard Piping and High-Lift      | 5 | 4 | 2 | 4 | 3 | 5 | 3 | 4 | 71.4        | 5 | 5 | 2 | 3 | 3 | 5 | 3 | 4 | 72.2        |
| 5    | 111010  | Lake Huron Water Treatment Plant -Filtration and Pretreatment     | 4 | 4 | 3 | 4 | 3 | 2 | 2 | 3 | 64          | 4 | 4 | 4 | 4 | 4 | 2 | 2 | 3 | 71          |
| 6    | 132019  | Wick Road Pumping Station Improvements                            | 5 | 4 | 2 | 4 | 3 | 3 | 3 | 3 | 66.4        | 5 | 4 | 2 | 4 | 3 | 3 | 4 | 3 | 68.4        |
| 7    | 113006  | Southwest Water Treatment Plant Chlorine Scrubber, Raw Water      | 4 | 3 | 4 | 2 | 5 | 4 | 1 | 3 | 68.2        | 4 | 3 | 4 | 2 | 5 | 4 | 1 | 3 | 68.2        |
| 8    | 112003  | Northeast Water Treatment Plant High-Lift Pumping Station         | 5 | 5 | 2 | 4 | 5 | 2 | 2 | 4 | 74.4        | 5 | 4 | 2 | 4 | 4 | 2 | 2 | 4 | 68          |
| 9    | 132014  | Adams Road Pumping Station Improvements                           | 5 | 4 | 2 | 4 | 2 | 4 | 3 | 5 | 68.2        | 5 | 3 | 2 | 3 | 3 | 4 | 3 | 4 | 64.6        |
| 10   | 132020  | Franklin Pumping Station Improvements                             | 4 | 5 | 3 | 4 | 2 | 3 | 3 | 3 | 67.2        | 4 | 5 | 2 | 3 | 3 | 3 | 2 | 4 | 64.6        |
| 11   | 122007  | Merriman Road Water Transmission Main Loop                        | 3 | 5 | 1 | 4 | 3 | 5 | 5 | 4 | 70          | 1 | 5 | 1 | 4 | 3 | 4 | 4 | 4 | 61.6        |
| 12   | 132016  | North Service Center Pumping Station Improvements                 | 5 | 4 | 2 | 5 | 3 | 4 | 4 | 4 | 74          | 4 | 3 | 2 | 3 | 3 | 4 | 1 | 4 | 58.2        |
| 13   | 132021  | Imlay Pumping Station Improvements                                | 4 | 5 | 1 | 4 | 3 | 3 | 3 | 4 | 65.2        | 4 | 3 | 2 | 3 | 3 | 4 | 1 | 4 | 58.2        |
| 14   | 132022  | Joy Road Pumping Station Improvements                             | 4 | 4 | 1 | 3 | 3 | 2 | 3 | 3 | 56.6        | 4 | 3 | 2 | 3 | 3 | 3 | 1 | 4 | 56.6        |
| 15   | 132018  | Schoolcraft Pumping Station Improvements                          | 3 | 3 | 1 | 4 | 3 | 3 | 2 | 2 | 51.2        | 4 | 3 | 2 | 3 | 3 | 3 | 1 | 4 | 56.6        |
| 16   | 114018  | Springwells Water Treatment Plant - Service Building Electrical   | 4 | 3 | 1 | 3 | 3 | 1 | 2 | 1 | 46.4        | 4 | 4 | 2 | 3 | 3 | 1 | 2 | 1 | 53          |
| 17   | 111011  | Lake Huron WTP Pilot Plant                                        | 5 | 5 | 2 | 1 | 1 | 4 | 1 | 3 | 53.6        | 5 | 5 | 2 | 1 | 1 | 3 | 1 | 3 | 52          |
| 18   | 113003  | Southwest Water Treatment Plant, Low- and High-Lift Pumping       | 4 | 3 | 2 | 4 | 2 | 2 | 1 | 2 | 50.2        | 4 | 3 | 2 | 4 | 2 | 2 | 1 | 2 | 50.2        |
| 19   | 114017  | Springwells Water Treatment Plant Flocculator Drive Replacements  | 4 | 3 | 2 | 3 | 1 | 2 | 2 | 3 | 48.4        | 4 | 2 | 2 | 3 | 2 | 2 | 2 | 2 | 47          |
| 20   | 111008  | Lake Huron Water Treatment Plant, Architectural Programming for   | 3 | 2 | 1 | 2 | 2 | 1 | 1 | 1 | 33.4        | 4 | 2 | 2 | 1 | 2 | 2 | 1 | 2 | 40.6        |
| 21   | 115006  | Water Works Park Site/Civil Improvements                          | 4 | 3 | 1 | 3 | 2 | 1 | 3 | 2 | 46.8        | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 1 | 39.4        |
| 22   | 113007  | Southwest Water Treatment Plant Architectural and Building        | 4 | 2 | 1 | 3 | 1 | 1 | 1 | 2 | 36.4        | 3 | 2 | 1 | 3 | 1 | 1 | 2 | 2 | 36          |



+ PROCESS

III FINANCE

IV CIP SUMMARY

V PRIORITIZATION

VI PROJECTS BY CATEGORY VII TEN-YEAR OUTLOOK VIII PROJECT DESCRIPTIONS

IX GLOSSARY

# SECTION 4 PROJECT MANAGER CRITERIA SCORES: WASTEWATER

| Rank | CIP No. | Title                                                              | 0      | 10 | 20 | 30 | 40 | 50 | 60 | 70      | 80               |
|------|---------|--------------------------------------------------------------------|--------|----|----|----|----|----|----|---------|------------------|
| 1    | 211005  | WRRF PS No. 2 Improvements Phase II                                | 211005 |    |    |    |    |    |    |         |                  |
| 2    | 277001  | Baby Creek Outfall Improvements Project                            | 277001 |    |    |    |    |    |    |         |                  |
| 3    | 213006  | WRRF Improvements to Sludge Feed Pumps at Dewatering Facilities    | 213006 |    |    |    |    |    |    |         |                  |
| 4    | 212008  | WRRF Aeration Improvements 1 and 2                                 | 212008 |    |    |    |    |    |    |         |                  |
| 5    | 212009  | WRRF Aeration Improvements 3 and 4                                 | 212009 |    |    |    |    |    |    |         |                  |
| 6    | 211007  | WRRF PS #2 Bar Racks Replacements and Grit Collection System       | 211007 |    |    |    |    |    |    |         |                  |
| 7    | 211010  | Rehabilitation of Sludge Processing Complexes A and B              | 211010 |    |    |    |    |    |    |         |                  |
| 8    | 270001  | Pilot CSO Netting Facility                                         | 270001 |    |    |    |    |    |    | ■ RC Sc | core             |
| 9    | 211011  | WRRF PS1 Screening and Grit Improvements                           | 211011 |    |    |    |    |    |    |         |                  |
| 10   | 216010  | WRRF Facility Optimization                                         | 216010 |    |    |    |    |    |    |         |                  |
| 11   | 270002  | Meldrum Sewer Diversion and VR-15 Improvements                     | 270002 |    |    |    |    |    |    | ■ PM S  | core             |
| 12   | 211009  | WRRF Rehabilitation of the Circular Primary Clarifier Scum Removal | 211009 |    |    |    |    |    |    |         |                  |
| 13   | 233003  | Rouge River In-system Storage Devices                              | 233003 |    |    |    |    |    |    |         |                  |
| 14   | 270003  | Long Term CSO Control Plan                                         | 270003 |    |    |    |    |    |    | RC So   | core and<br>core |
| 15   | 216008  | Rehabilitation of Screened Final Effluent (SFE) Pump Station       | 216008 |    |    |    |    |    |    | overl   | ap               |
| 16   | 222001  | Oakwood District Intercommunity Relief Sewer Modification at       | 222001 |    |    |    |    |    |    |         |                  |
| 17   | 212007  | WRRF Rehabilitation of the Secondary Clarifiers                    | 212007 |    |    |    |    |    |    |         |                  |
| 18   | 232004  | Condition Assessment at Blue Hill Pump Station                     | 232004 |    |    |    |    |    |    |         |                  |



CIP DEVELOPME

III FINANCE

IV CIP SUMMARY

V PRIORITIZATION

VI PROJECTS BY CATEGORY VII TEN-YEAR OUTLOOK VIII PROJECT DESCRIPTIONS

IX GLOSSARY

# SECTION 5 PROJECT MANAGER CRITERIA SCORES: WASTEWATER

| Rank | CIP No. | Title                                                                         | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | PM<br>Score | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | RC<br>Score |
|------|---------|-------------------------------------------------------------------------------|---|---|---|---|---|---|---|---|-------------|---|---|---|---|---|---|---|---|-------------|
| 1    | 211005  | WRRF PS No. 2 Improvements Phase II                                           | 5 | 4 | 4 | 3 | 4 | 3 | 4 | 4 | 78.6        | 5 | 4 | 4 | 3 | 4 | 3 | 2 | 3 | 72.8        |
| 2    | 277001  | Baby Creek Outfall Improvements Project                                       | 2 | 5 | 3 | 5 | 3 | 4 | 3 | 4 | 71.4        | 2 | 5 | 4 | 4 | 3 | 4 | 3 | 4 | 72.8        |
| 3    | 213006  | WRRF Improvements to Sludge Feed Pumps at Dewatering Facilities               | 3 | 4 | 4 | 3 | 3 | 3 | 2 | 4 | 66.4        | 4 | 3 | 4 | 5 | 2 | 2 | 4 | 4 | 69.2        |
| 4    | 212008  | WRRF Aeration Improvements 1 and 2                                            | 4 | 4 | 5 | 3 | 3 | 3 | 4 | 3 | 74.6        | 4 | 3 | 4 | 3 | 3 | 3 | 3 | 4 | 67.8        |
| 5    | 212009  | WRRF Aeration Improvements 3 and 4                                            | 4 | 4 | 5 | 3 | 3 | 3 | 4 | 3 | 74.6        | 4 | 3 | 4 | 3 | 3 | 3 | 3 | 4 | 67.8        |
| 6    | 211007  | WRRF PS #2 Bar Racks Replacements and Grit Collection System Improvements     | 4 | 4 | 4 | 4 | 3 | 2 | 4 | 4 | 73.4        | 3 | 4 | 4 | 4 | 3 | 3 | 3 | 1 | 65.2        |
| 7    | 211010  | Rehabilitation of Sludge Processing Complexes A and B                         | 2 | 2 | 4 | 4 | 5 | 4 | 2 | 2 | 65          | 2 | 2 | 4 | 4 | 5 | 4 | 2 | 2 | 65          |
| 8    | 270001  | Pilot CSO Netting Facility                                                    | 1 | 4 | 5 | 1 | 4 | 3 | 2 | 3 | 62.4        | 1 | 5 | 5 | 1 | 4 | 4 | 1 | 3 | 65          |
| 9    | 211011  | WRRF PS1 Screening and Grit Improvements                                      | 4 | 5 | 2 | 4 | 2 | 2 | 4 | 3 | 64          | 4 | 5 | 2 | 4 | 2 | 2 | 4 | 3 | 64          |
| 10   | 216010  | WRRF Facility Optimization                                                    | 4 | 3 | 1 | 3 | 4 | 5 | 3 | 4 | 63.6        | 4 | 3 | 1 | 3 | 4 | 5 | 3 | 4 | 63.6        |
| 11   | 270002  | Meldrum Sewer Diversion and VR-15 Improvements                                | 1 | 1 | 5 | 1 | 4 | 5 | 1 | 4 | 56.4        | 1 | 3 | 5 | 1 | 4 | 5 | 1 | 4 | 62.4        |
| 12   | 211009  | WRRF Rehabilitation of the Circular Primary Clarifier Scum Removal<br>System  | 3 | 3 | 3 | 2 | 2 | 2 | 3 | 3 | 52.8        | 4 | 5 | 3 | 2 | 2 | 2 | 3 | 3 | 61.2        |
| 13   | 233003  | Rouge River In-system Storage Devices                                         | 1 | 1 | 5 | 1 | 4 | 4 | 2 | 5 | 58.6        | 1 | 3 | 5 | 1 | 4 | 4 | 1 | 4 | 60.8        |
| 14   | 270003  | Long Term CSO Control Plan                                                    | 1 | 3 | 5 | 1 | 4 | 3 | 3 | 2 | 59.6        | 1 | 3 | 5 | 1 | 4 | 3 | 3 | 2 | 59.6        |
| 15   | 216008  | Rehabilitation of Screened Final Effluent (SFE) Pump Station                  | 5 | 2 | 2 | 4 | 1 | 2 | 4 | 4 | 55.8        | 5 | 2 | 2 | 4 | 1 | 2 | 4 | 4 | 55.8        |
| 16   | 222001  | Oakwood District Intercommunity Relief Sewer Modification at Oakwood District | 1 | 4 | 2 | 1 | 3 | 4 | 3 | 3 | 51.8        | 1 | 4 | 2 | 1 | 3 | 4 | 3 | 4 | 53.6        |
| 17   | 212007  | WRRF Rehabilitation of the Secondary Clarifiers                               | 4 | 3 | 4 | 3 | 3 | 3 | 1 | 1 | 58.4        | 4 | 3 | 4 | 3 | 1 | 4 | 1 | 1 | 53.2        |
| 18   | 232004  | Condition Assessment at Blue Hill Pump Station                                | 3 | 3 | 2 | 3 | 2 | 2 | 3 | 5 | 55          | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0           |



# PROCESS

III FINANCE

IV CIP SUMMARY

PRIORITIZATION

VI PROJECTS BY CATEGORY VII TEN-YEAR OUTLOOK VIII PROJECT DESCRIPTIONS

IX GLOSSARY

# SECTION 6 BCE PRIORITIZATION SCHEDULE ALIGNMENT

Meetings were held with stakeholders from Water Engineering and Wastewater Engineering, respectively, to align the scoring with the planned execution timelines. Water's intended execution order was aligned with the scoring, so is identical to the chart shown in Chapter V, Section 2 above. Wastewater projects were discussed, and the following order of execution was determined:

|    | CIP No. | Title                                                           | Reason For Shift                                                                                               |        | 0 | 20 | 40 | 60       | 80  |
|----|---------|-----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------|---|----|----|----------|-----|
| 1  | 277001  | Baby Creek Outfall Improvements<br>Project                      | NA                                                                                                             | 277001 |   |    |    |          |     |
| 2  | 211007  | WRRF PS #2 Bar Racks<br>Replacements and Grit Collection        | Needs to be done before 211005; RFP is in development                                                          | 211007 |   |    |    |          |     |
| 3  | 213006  | WRRF Improvements to Sludge Feed Pumps at Dewatering            | NA                                                                                                             | 213006 |   |    |    |          |     |
| 4  | 212008  | WRRF Aeration Improvements 1 and 2                              | Aeration 1 & 2 priority over 3 & 4                                                                             | 212008 |   |    |    |          |     |
| 5  | 211005  | WRRF PS No. 2 Improvements Phase II                             | Phase I results needed prior to execution. Improvements for PS 1 & 2 must be staggered to meet capacity req's. | 211005 |   |    |    |          |     |
| 6  | 216010  | WRRF Facility Optimization                                      | NA                                                                                                             | 216010 |   |    |    |          |     |
| 7  | 211009  | WRRF Rehab of the Circular Primary Clarifier Scum Removal       | NA                                                                                                             | 211009 |   |    |    |          |     |
| 8  | 270003  | Long Term CSO Control Plan                                      | More clarity required through this plan to prioritize other CSO projects.                                      | 270003 |   |    |    |          |     |
| 9  | 270001  | Pilot CSO Netting Facility                                      | Depends on the results of the CSO long-term plan                                                               | 270001 |   |    |    |          |     |
| 10 | 270002  | Meldrum Sewer Diversion and VR-15 Improvements                  | NA                                                                                                             | 270002 |   |    |    |          |     |
| 11 | 233003  | Rouge River In-system Storage<br>Devices                        | NA                                                                                                             | 233003 |   |    |    |          |     |
| 12 | 216008  | Rehabilitation of Screened Final<br>Effluent (SFE) Pump Station | NA                                                                                                             | 216008 |   |    |    |          |     |
| 13 | 211010  | Rehabilitation of Sludge Processing<br>Complexes A and B        | NA                                                                                                             | 211010 |   |    |    |          |     |
| 14 | 211011  | WRRF PS1 Screening and Grit<br>Improvements                     | NA                                                                                                             | 211011 |   |    |    |          |     |
| 15 | 212009  | WRRF Aeration Improvements 3 and 4                              | Want to do Aeration 1 & 2 prior to 3 & 4                                                                       | 212009 |   |    |    |          |     |
| 16 | 222001  | Oakwood District Intercommunity<br>Relief Sewer Modification at | NA                                                                                                             | 222001 |   |    |    |          |     |
| 17 | 212007  | WRRF Rehabilitation of the<br>Secondary Clarifiers              | Last on the list                                                                                               | 212007 |   |    |    |          |     |
| 18 | 232004  | Condition Assessment at Blue Hill<br>Pump Station               | This project may be removed from CIP, contingent on executive direction                                        | 232004 |   |    |    | ■ RC Sco | ore |

# VI. PROJECTS BY CATEGORY

# SECTION 1 WATER

All financial figures are in thousands of dollars (\$1,000's). The Project Status column shows which projects are Active (A), Future Planned (FP), or Pending Closeout (PC). Projects that have been Reclassified to a different number, Closed, or Cancelled are not shown in this list; a list of Closed projects can be found in Chapter IV. For projects in the "Centralized Services" category (CIP number begins with 3), only portions of projects funded by the water budget are included in this section. Projects new to the CIP this year are denoted by bolded CIP number and title. Following these tables is a chart from the Integrated Master Schedule showing the planned sequencing of projects. This was done by updating our scheduler software (Primavera P6) with the updated information from the CIP database.

Table VI-1. Water CIP Projects: Active, Ranked by 2021-2025 CIP Total

|        |                                                                                                                   | U              |            | = -                                           |         |         | Destant         | .le                   | A11     |         |                  |                        |               |                    |
|--------|-------------------------------------------------------------------------------------------------------------------|----------------|------------|-----------------------------------------------|---------|---------|-----------------|-----------------------|---------|---------|------------------|------------------------|---------------|--------------------|
| CIP#   | Title                                                                                                             | Project Statue | Year Added | Lifetime Actua<br>Thru FY 2019<br>(unaudited) | FY 2020 | FY 2021 | Project 2022 Y4 | ed Exper<br>SO53<br>A | FY 2024 | FY 2025 | FY 2026 & Beyond | 2021-2025<br>CIP Total | Project Total | Percent of W/S CIP |
| 122003 | Water Works Park to Northeast Transmission Main                                                                   | Α              | 2014       | 2,611                                         | 1,169   | 11,703  | 18,407          | 18,678                | 18,170  | 20,839  | 65,949           | 87,797                 | 157,526       | 9.4%               |
| 122004 | 96-inch Water Transmission Main Relocation and Isolation Valve Installations                                      | A              | 2016       | 1,790                                         | 2,549   | 5,267   | 15,765          | 19,937                | 19,797  | 19,797  | 59,969           | 80,563                 | 144,871       | 8.6%               |
| 114002 | Springwells Water Treatment Plant, Low-Lift and High-Lift Pumping Station Improvements                            | A              | 2004       | 2,080                                         | 3,039   | 7,113   | 12,893          | 18,905                | 18,690  | 19,175  | 92,940           | 76,776                 | 174,835       | 8.2%               |
| 115001 | Water Works Park Water Treatment Plant Yard Piping, Valves and Venturi Meters Replacement                         | A              | 2007       | 1,760                                         | 251     | 5,462   | 13,349          | 21,478                | 20,883  | 8,836   | 0                | 70,008                 | 72,019        | 7.5%               |
| 122013 | 14 Mile Transmission Main Loop                                                                                    | Α              | 2017       | 638                                           | 3,762   | 1,194   | 17,085          | 17,085                | 17,085  | 17,085  | 7                | 69,534                 | 73,941        | 7.4%               |
| 116002 | Pennsylvania and Springwells Raw Water Supply Tunnel Improvements                                                 | A              | 2016       | 10,200                                        | 653     | 14,138  | 21,917          | 8,810                 | 5,527   | 0       | 0                | 50,392                 | 61,245        | 5.4%               |
| 111001 | Lake Huron Water Treatment Plant, Low-Lift, High Lift and Filter Backwash Pumping System Improvements             | A              | 2010       | 14                                            | 1,236   | 1,636   | 1,749           | 13,725                | 12,768  | 12,841  | 11,121           | 42,719                 | 55,090        | 4.6%               |
| 132010 | West Service Center Pumping Station - Reservoir, Reservoir<br>Pumping, and Division Valve Upgrades                | A              | 2017       | 296                                           | 663     | 4,323   | 12,209          | 11,853                | 8,361   | 0       | 0                | 36,746                 | 37,705        | 3.9%               |
| 170800 | System-Wide Finished Water Reservoir Inspection, Design and Rehabilitation                                        | A              | 2016       | 457                                           | 2,160   | 6,087   | 6,087           | 6,087                 | 4,100   | 11,366  | 22,732           | 33,727                 | 59,076        | 3.6%               |
| 122016 | Downriver Transmission Main Loop                                                                                  | A              | 2017       | 24                                            | 1,398   | 1,748   | 3,793           | 7,984                 | 8,007   | 7,984   | 6,806            | 29,516                 | 37,744        | 3.2%               |
| 111009 | Lake Huron Water Treatment Plant - High Lift Pumping, Water Production Flow Metering and Yard Piping Improvements | A              | 2018       | 30                                            | 548     | 1,856   | 3,554           | 8,991                 | 10,561  | 3,686   | 0                | 28,648                 | 29,226        | 3.1%               |
| 132012 | Ypsilanti Booster Pumping Station Improvements                                                                    | A              | 2017       | 21                                            | 712     | 846     | 846             | 3,827                 | 9,721   | 11,936  | 3,708            | 27,176                 | 31,617        | 2.9%               |
| 132015 | Newburgh Road Booster Pumping Station Improvements                                                                | A              | 204 5      | 3                                             | 581     | 973     | 1,595           | 5,216                 | 6,286   | 9,133   | 6,890            | 23,203                 | 30,677        | 2.5%               |
| 122006 | Wick Road Water Transmission Main                                                                                 | A              | 2016       | 420                                           | 6,163   | 9,975   | 5,780           | 0                     | 0       | 0       | 0                | 15,755                 | 22,338        | 1.7%               |
| 111006 | Lake Huron Water Treatment Plant, Filter Instrumentation and                                                      |                | 2014       | 770                                           | 226     | 225     | 225             | 2 222                 | 6 10 4  | ( (20   | 0                | 15 (12                 | 16.626        | 1.70/              |
| 111006 | Raw Water Flow Metering Improvements                                                                              | A              | 2014       | 778                                           | 236     | 235     | 235             | 2,330                 | 6,184   | 6,628   | 0                | 15,612                 | 16,626        | 1.7%               |
| 122005 | Schoolcraft Road Water Transmission Main                                                                          | Α              | 2016       | 141                                           | 3,342   | 13,141  | 1,482           | 0                     | U       | 0       | 0                | 14,623                 | 18,106        | 1.6%               |



II CIP DEVELOPMENT + PROCESS

III FINANCE

IV CIP SUMMARY

**V** PRIORITIZATION

/I PROJECTS
Y CATEGORY

VII TEN-YEAR OUTLOOK VIII PROJECT DESCRIPTIONS

IX GLOSSARY

|        |                                                                | SIL    |            | ual<br>19                 |         |         | Projecte | ed Expen | ditures |         |                    | ın.                   | al       |          |
|--------|----------------------------------------------------------------|--------|------------|---------------------------|---------|---------|----------|----------|---------|---------|--------------------|-----------------------|----------|----------|
| -+-    |                                                                | 7      | g          | Act<br>202<br>tec         |         |         | ~        | m        |         | 10      |                    | 02<br>ta]             | <u>5</u> | <b>₽</b> |
| #      | Title                                                          | ى      | ₽ <b>q</b> | Y Z                       | 5       | 2.      | 22       | 7        | 27      | 2       | 26<br>Inc          | 5-2                   | <u> </u> | on S     |
| CIP    | THE                                                            | e<br>C |            | fetime<br>hru FY<br>unaud | FY 2020 | 70      | FY 2022  | FY 2023  | FY 2024 | 7(      | Y 2026 .<br>Beyond | .021-202<br>CIP Total | <u> </u> | 5 %      |
|        |                                                                | .6     | Year Added | fer land                  | FY      | FY 2021 | F        | FY       | FY      | FY 2025 | FY 2026<br>Beyond  | 2021-202<br>CIP Total |          | Pe       |
|        |                                                                |        |            | 3 5 7                     |         |         |          |          |         |         | <u> </u>           |                       | <u> </u> |          |
| 114011 | Springwells Water Treatment Plant Steam, Condensate Return,    | ۸      | 2012       | 2 272                     | 6.040   | ( 022   | ( 022    | 713      | 0       | 0       | 0                  | 14577                 | 23,898   | 1 (0/    |
| 114011 | and Compressed Air Piping Improvements                         | A      | 2012       | 2,373                     | 6,948   | 6,932   | 6,932    | /13      | U       | U       | U                  | 14,577                | 23,898   | 1.6%     |
| 150500 | Transmission System Valve Rehabilitation and Replacement       |        | 2045       | 7.450                     | 6.40    | 4 4 7 7 | 2.440    | 2.455    | 2.240   | 2 202   | 4.504              | 40.004                | 26.460   | 4.50/    |
| 170500 | Program                                                        |        | 2017       | 7,159                     | 642     | 1,177   | 3,119    | 3,175    | 3,210   | 3,203   | 4,784              |                       | 26,469   | 1.5%     |
| 170300 | Water Treatment Plant Automation Program                       | A      | 2017       | 1,658                     | 3,208   | 5,440   | 2,943    | 1,211    | 3,117   | 1,151   | 0                  | 13,862                | 18,728   | 1.5%     |
|        | Springwells Water Treatment Plant 1930 Sedimentation Basin     |        |            |                           |         |         |          |          |         |         |                    |                       |          |          |
| 114008 | Sluice Gates, Guides & Hoists Improvements                     | A      | 2014       | 178                       | 3,386   | 10,327  | 331      | 19       | 0       | 0       | 0                  | 10,677                | 14,241   | 1.1%     |
|        | Roof Replacement at WWP, SP, LH, NE, SW, NSC, Orion,           |        |            |                           |         |         |          |          |         |         |                    |                       |          |          |
|        | Franklin, and Conner Creek Facilities                          |        | 2018       | 71                        | 2,828   | 173     | 317      | 2,907    | 3,126   | 2,255   | 11,996             | 8,778                 | 23,673   | 0.9%     |
| 115005 | WWP WTP Building Ventilation Improvements                      |        | 2018       | 0                         | 1,614   | 1,999   | 3,610    | 2,539    | 379     | 0       | 0                  | 8,527                 | 10,141   | 0.9%     |
| 170400 | Water Transmission Improvement Program                         | Α      | 2010       | 1,643                     | 1,781   | 1,776   | 1,776    | 1,776    | 1,781   | 1,046   | 16,578             | 8,155                 | 28,157   | 0.9%     |
|        | Springwells Water Treatment Plant, Administration Building     |        |            |                           |         |         |          |          |         |         |                    |                       |          |          |
| 114005 | Improvements & Underground Fire Protection Loop                | Α      | 2014       | 264                       | 417     | 2,302   | 4,198    | 1,515    | 0       | 0       | 0                  | 8,015                 | 8,696    | 0.9%     |
| 170600 | Water Transmission Main Asset Assessment Program               | Α      | 2017       | 0                         | 54      | 54      | 54       | 775      | 2,183   | 4,183   | 23,450             | 7,249                 | 30,753   | 0.8%     |
| 170100 | Water Treatment Plant / Pump Station Allowance                 | Α      | 2012       | 9,747                     | 1,813   | 1,499   | 1,359    | 1,359    | 1,363   | 1,359   | 51,665             | 6,939                 | 70,164   | 0.7%     |
| 112006 | Northeast Water Treatment Plant Flocculator Replacements       | A      | 2018       | 3                         | 460     | 2,773   | 3,026    | 849      | 0       | 0       | 0                  | 6,648                 | 7,111    | 0.7%     |
|        | Security Infrastructure Improvements on Water Facilities       | Α      | 2019       | 0                         | 4,029   | 4,018   | 2,603    | 0        | 0       | 0       | 0                  | 6,621                 | 10,650   | 0.7%     |
|        | Suburban Water Meter Pit Rehabilitation and Meter              |        |            |                           |         | ĺ       | ĺ        |          |         |         |                    | ,                     |          |          |
| 170900 | Replacement                                                    | Α      | 2014       | 1,238                     | 2,542   | 2,535   | 2,535    | 1,139    | 121     | 120     | 71                 | 6,450                 | 10,301   | 0.7%     |
|        | Energy Management: Freeze Protection Pump Installation at      | Ť      |            | _,                        | _,=     | _,==    | _,       | _,,      |         |         |                    | 0,100                 |          | - 70     |
| 132007 | Imlay Pump Station                                             | Α      | 2014       | 97                        | 685     | 4,211   | 206      | 0        | 0       | 0       | 0                  | 4,417                 | 5,199    | 0.5%     |
| 102007 | Lake Huron Water Treatment Plant, Raw Sludge Clarifier and     | Ť      | 2011       | ,                         | 000     | 1,211   |          | Ŭ        | Ü       | J       | Ü                  | 1,117                 | 0,277    | 0.070    |
| 111007 | Raw Sludge Pumping System Improvements                         | Α      | 2016       | 649                       | 4,896   | 3.392   | 0        | 0        | 0       | 0       | 0                  | 3,392                 | 8.937    | 0.4%     |
|        | Park-Merriman Road Water Transmission Main                     | Α      | 2015       | 988                       | 4,474   | 2,163   | 0        | 0        | 0       | 0       | 0                  | 2,163                 | 7,625    | 0.2%     |
| 122011 | Ford Road Pumping Station, Pressure and Control                | 1      | 2015       | 700                       | 1, 1, 1 | 2,100   | U        |          | U       | U       | U                  | 2,100                 | 7,025    | 0.270    |
| 132006 | Improvements                                                   | Δ      | 2014       | 289                       | 1,036   | 987     | 959      | 8        | 0       | 0       | 0                  | 1,954                 | 3,279    | 0.2%     |
| 132000 | Northeast Water Treatment Plant - Replacement of Covers for    | - 12   | 2014       | 207                       | 1,030   | 707     | 737      | U        | U       | U       | U                  | 1,754                 | 3,273    | 0.2 /0   |
| 112005 | Process Water Conduits                                         | ۸      | 2018       | 14                        | 269     | 1,096   | 14       | 0        | 0       | 0       | 0                  | 1,110                 | 1,393    | 0.1%     |
| 112003 | Southwest Water Treatment Plant, High-Lift Pump Discharge      | п      | 2010       | 14                        | 209     | 1,090   | 14       | U        | U       | U       | U                  | 1,110                 | 1,393    | 0.170    |
| 113002 | Valve Actuators Replacement                                    | ۸      | 2014       | 2.479                     | 2,313   | 1,094   | 0        | 0        | 0       | 0       | 0                  | 1,094                 | 5,886    | 0.1%     |
| 132026 | •                                                              |        | 2014       | 2,479                     | 449     | 613     | 349      | 0        | 0       | 0       | 0                  | 962                   | 1,411    | 0.1%     |
|        | Franklin Pumping Station Valve Replacement                     |        | 2019       | -                         |         |         | 0        | 0        | 0       | 0       | 0                  | 715                   | 2,130    | 0.1%     |
| 380700 | As-Needed Geotechnical and Related Engineering Services        | Α      | 2006       | U                         | 1,415   | 715     | U        | U        | U       | U       | U                  | /15                   | 2,130    | 0.1%     |
|        | As-Needed Construction Materials, Environmental Media and      |        |            |                           |         |         |          |          |         |         |                    |                       |          |          |
| 170200 | Special Testing Services, Construction Inspection, and Other   |        | 2014       |                           | 1.055   | COF     | 0        | 0        | 0       |         | 0                  | 604                   | 1.015    | 0.107    |
| 170200 | Technical Services                                             | A      | 2014       | 64                        | 1,057   | 685     | 9        | 0        | 0       | 0       | 0                  | 694                   | 1,815    | 0.1%     |
| 122002 | West Service Center Pumping Station, Isolation Gate Valves for |        | 2044       | 240                       | 1.666   | <b></b> | 0        |          | 0       | 0       | 0                  |                       | 4.050    | 0.004    |
| 132003 | Line Pumps                                                     | A      | 2014       | 248                       | 1,666   | 65      | 0        | 0        | 0       | 0       | 0                  | 65                    | 1,979    | 0.0%     |
| 111000 | Lake Huron Water Treatment Plant, Miscellaneous Mechanical     |        |            |                           | 4.050   |         |          |          |         |         |                    |                       | 0.00:    | 0.001    |
| 111002 | HVAC Improvements                                              | A      | 2014       | 6,991                     | 1,972   | 41      | 0        | 0        | 0       | 0       | 0                  | 41                    | 9,004    | 0.0%     |
|        | Lake Huron Water Treatment Plant, Electrical Tunnel            |        |            |                           |         |         |          |          |         |         |                    |                       |          |          |
| 111004 | Rehabilitation                                                 | A      | 2014       | 2,764                     | 1,372   | 0       | 0        | 0        | 0       | 0       | 0                  | 0                     | 4,136    | 0.0%     |



I OVERVIEW

II CIP DEVELOPMENT + PROCESS

III FINANCE

IV CIP SUMMARY

V PRIORITIZATION

VI PROJECTS BY CATEGORY VII TEN-YEAR OUTLOOK VIII PROJECT DESCRIPTIONS

IX GLOSSARY

| CIP#   | Title                                                                                                         | Project Status | Year Added | Lifetime Actual<br>Thru FY 2019<br>(unaudited) | FY 2020 | FY 2021 | Project<br>Z022<br>X4 | ed Exper<br>S<br>S<br>S<br>Experience | FY 2024 | FY 2025 | FY 2026 &<br>Beyond | 2021-2025<br>CIP Total | Project Total | Percent of W/S CIP |
|--------|---------------------------------------------------------------------------------------------------------------|----------------|------------|------------------------------------------------|---------|---------|-----------------------|---------------------------------------|---------|---------|---------------------|------------------------|---------------|--------------------|
| 112002 | Northeast Water Treatment Plant, Low-Lift Pumping Plant<br>Caisson Rehabilitation                             | А              | 2014       | 1,135                                          | 210     | 0       | 0                     | 0                                     | 0       | 0       | 0                   | 0                      | 1,345         | 0.0%               |
| 114001 | Springwells Water Treatment Plant, 1958 Filter Rehabilitation and Auxiliary Facilities Improvements           | A              | 2002       | 96,174                                         | 5,794   | 0       | 0                     | 0                                     | 0       | 0       | 0                   | 0                      | 101,968       |                    |
| 114003 | Water Production Flow Metering Improvements at Northeast,<br>Southwest and Springwells Water Treatment Plants | A              | 2014       | 6,333                                          | 2,149   | 0       | 0                     | 0                                     | 0       | 0       | 0                   | 0                      | 8,482         | 0.0%               |
| 114012 | SPW WTP Water Treatment Plant 1930 Filter Building-Roof<br>Replacement                                        | A              | 2016       | 3,911                                          | 0       | 0       | 0                     | 0                                     | 0       | 0       | 0                   | 0                      | 3,911         | 0.0%               |
| 114013 | Springwells Water Treatment Plant, Reservoir Fill Line<br>Improvements                                        | A              | 2016       | 2,830                                          | 1,991   | 0       | 0                     | 0                                     | 0       | 0       | 0                   | 0                      | 4,821         | 0.0%               |
| 115003 | Water Works Park Water Treatment Plant Comprehensive Condition Assessment                                     | A              | 2014       | 514                                            | 68      | 0       | 0                     | 0                                     | 0       | 0       | 0                   | 0                      | 582           | 0.0%               |
| 115004 | Water Works Park Water Treatment Plant Chlorine System Upgrade                                                | A              | 2017       | 6,686                                          | 754     | 0       | 0                     | 0                                     | 0       | 0       | 0                   | 0                      | 7,440         | 0.0%               |
|        | Active Water Projects Total                                                                                   |                |            | 177,763                                        | 90,754  | 141,764 | 171,086               | 182,891                               | 181,420 | 162,623 | 378,666             | 839,784                | 1,486,967     | 89.8%              |

Table VI-2. Water CIP Projects: Pending Closeout, Ranked by Total Cost

| CIP#   | Title                                             | Project Status | Year Added | Lifetime Actual<br>Thru FY 2019<br>(unaudited) | FY 2020 | FY 2021 | ted 2022 | Expo 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | FY 2025 | FY 2026 & san<br>Beyond | 2021-2025<br>CIP Total | Project Total | Percent of W/S CIP |
|--------|---------------------------------------------------|----------------|------------|------------------------------------------------|---------|---------|----------|--------------------------------------------|---------|-------------------------|------------------------|---------------|--------------------|
| 122012 | 36-inch Water Main in Telegraph Road              | PC             | 2012       | 9,959                                          | 0       | 0       | 0        | 0                                          | 0 (     | 0                       | (                      | 9,959         | 0.0%               |
| 132008 | Various Pumping Stations - Needs Assessment Study | PC             | 2014       | 1,838                                          | 0       | 0       | 0        | 0                                          | 0 (     | 0                       | (                      | 1,838         | 0.0%               |
|        | Pending Closeout Water Projects Total             |                |            | 11,797                                         | 0       | 0       | 0        | 0                                          | 0 (     | 0                       | (                      | 11,797        | 0.0%               |



II CIP DEVELOPMENT + PROCESS

III FINANCE

IV CIP SUMMARY VI PROJECTS

VII TEN-YEAR OUTLOOK VIII PROJECT DESCRIPTIONS

IX GLOSSARY

# Table VI-3. Water CIP Projects: Future Planned, Ranked by Prioritization Score

**V** PRIORITIZATION

| tus              |                                                                                                         |              |              |                                           |         |         | Project | ted Exp  | enditui  | res     |                  | ю                     | al          | <u> </u>             | ou                        |
|------------------|---------------------------------------------------------------------------------------------------------|--------------|--------------|-------------------------------------------|---------|---------|---------|----------|----------|---------|------------------|-----------------------|-------------|----------------------|---------------------------|
| # dID            | Title                                                                                                   | Project Stat | Year Adde    | Lifetime Act<br>Thru FY 202<br>funaudited | FY 2020 | FY 2021 | FY 2022 | FY 2023  | FY 2024  | FY 2025 | FY 2026 & Beyond | 2021-202<br>CIP Total | Project Tot | Percent o<br>W/S CIP | Prioritizati<br>Score (RC |
| 122018           | Garland, Hurlbut, Bewick Water Transmission System Rehabilitation                                       | ı FP         | 2019         | 0                                         | 121     | 1,717   | 2,037   | 2,690    | 4,006    | 4,006   | 30,000           | 14,456                | 44,577      | 1.5%                 | 89.0                      |
| 122017           | 7 Mile/Nevada Transmission Main Rehab and Carrie/Nevada Flow Control Station                            | FP           | 2019         | 0                                         | 74      | 1,794   | 3,510   | 9,223    | 7,620    | 7,572   | 30,784           | 29,719                | 60,577      | 3.2%                 | 84.2                      |
|                  | Springwells Water Treatment Plant, Yard Piping and High-Lift                                            |              |              |                                           |         |         |         |          |          |         |                  |                       |             |                      |                           |
| 114010           | Header Improvements                                                                                     | FP           | 2012         | 4                                         | 0       | 1       | 46      | 608      | 9,409    | 11,958  | 90,587           | 22,022                | 112,613     | 2.4%                 | 72.2                      |
| 111010           | Lake Huron Water Treatment Plant -Filtration and Pretreatment                                           |              | 2010         | 0                                         | 0       | 0       | 0       | 0        | 4.0      | 40      | F F 70           | 60                    | F (00       | 0.007                | 74.0                      |
|                  | Improvements                                                                                            | FP           | 2019         | 0                                         | 0       | 0       | 0       | 0        | 12       | 48      | 5,572            | 60                    | 5,632       | 0.0%                 | 71.0                      |
| 132019           | Wick Road Pumping Station Improvements                                                                  | FP           | 2018         | 0                                         | 0       | 0       | 0       | 0        | 0        | 15      | 2,925            | 15                    | 2,940       | 0.0%                 | 68.4                      |
| 112006           | Southwest Water Treatment Plant Chlorine Scrubber, Raw Water                                            | CD           | 2017         | 0                                         | 0       | 260     | 2 220   | 2 220    | 17       | 0       | 0                | 4.750                 | 4.750       | 0.50/                | 60.2                      |
| 113006           | Screens & Related Improvements                                                                          | FP           | 2017         | 0                                         | 0       | 260     | 2,238   | 2,238    | 17       | 0       | 0                | 4,753                 | 4,753       | 0.5%                 | 68.2                      |
| 112003           | Northeast Water Treatment Plant High-Lift Pumping Station<br>Improvements                               | FP           | 2017         | 0                                         | 0       | 0       | 0       | 40       | 1,228    | 2,383   | 53,914           | 3,651                 | 57,565      | 0.4%                 | 68.0                      |
|                  | Adams Road Pumping Station Improvements                                                                 | FP           | 2017         | 0                                         | 0       | 0       | 0       | 40<br>13 | 205      | 925     | 26,393           | 1,143                 | 27,536      | 0.4%                 |                           |
| 132014           |                                                                                                         | FP           | 2017         | 0                                         | 0       | 0       | 0       | 0        | 203      | 923     | 2,442            | 1,143                 | 2,442       | 0.1%                 |                           |
| 122007           | Franklin Pumping Station Improvements  Merriman Road Water Transmission Main Loop                       | FP           | 2018         | 0                                         | 0       | 0       | 0       | 15       | 390      | 1,297   | 19,755           | 1,702                 | 21,457      | 0.0%                 |                           |
|                  | North Service Center Pumping Station Improvements                                                       | FP           | 2010         | 0                                         | 0       | 0       | 21      | 279      | 2,385    | 1,832   | 40,825           | 4,517                 | 45,342      |                      |                           |
|                  |                                                                                                         | FP           |              | 0                                         | 0       | 0       | 0       | 0        | 2,363    | 1,032   | -                | 4,517                 | 45,542      |                      |                           |
| 132021<br>132018 | Imlay Pumping Station Improvements                                                                      | FP           | 2018<br>2018 | 0                                         | 0       | 0       | 0       | 0        | 0        | 0       | 13<br>0          | 0                     | 0           | 0.0%                 |                           |
|                  | Schoolcraft Pumping Station Improvements                                                                |              |              | 7                                         |         | -       | 0       | 0        | _        |         |                  | 0                     |             |                      |                           |
| 132022           | Joy Road Pumping Station Improvements                                                                   | FP           | 2018         | /                                         | 0       | 0       | U       | U        | 0        | 0       | 48               | U                     | 55          | 0.0%                 | 56.6                      |
| 114010           | Springwells Water Treatment Plant - Service Building Electrical                                         | FP           | 2019         | 0                                         | 0       | 0       | 90      | 1,378    | 40       | 0       | 0                | 1 500                 | 1 500       | 0.20/                | 53.0                      |
| 114018           | Substation and Miscellaneous Improvements Springwells Water Treatment Plant 1958 Settled Water Conduits | FP           | 2019         | U                                         | 0       | U       | 90      | 1,3/8    | 40       | U       | 0                | 1,508                 | 1,508       | 0.2%                 | 53.0                      |
| 114016           | and Loading Dock Concrete Pavement Replacement                                                          | FP           | 2018         | 0                                         | 94      | 1,663   | 7       | 0        | 0        | 0       | 0                | 1,670                 | 1,764       | 0.2%                 | 52.0                      |
|                  | Lake Huron WTP Pilot Plant                                                                              | FP           | 2019         | 0                                         | 0       | 1,003   | 0       | 0        | 0        | 0       | 1,794            | 0                     | 1,704       | 0.2%                 |                           |
| 111011           | Southwest Water Treatment Plant, Low- and High-Lift Pumping                                             | 1.1          | 2019         | U                                         | U       | U       | U       | U        | U        | U       | 1,7 74           | U                     | 1,7 74      | 0.070                | 32.0                      |
| 113003           | Station, Flocculation and Filtration System Improvements                                                | FP           | 2014         | 0                                         | 0       | 0       | 0       | 0        | 0        | 0       | 14,314           | 0                     | 14,314      | 0.0%                 | 50.2                      |
|                  | Springwells Water Treatment Plant Flocculator Drive Replacements                                        | _            | 2014         | 0                                         | 29      | 315     | 635     | 2,265    | 6,035    | 17      | 0                | 9,267                 | 9,296       |                      |                           |
| 114017           | Springwells Water Treatment Plant Powdered Activated Carbon                                             | 1.1          | 2010         | U                                         | 29      | 313     | 033     | 2,203    | 0,033    | 17      | U                | 9,207                 | 9,290       | 1.070                | 47.0                      |
| 114007           | System Improvements                                                                                     | FP           | 2014         | 0                                         | 0       | 0       | 0       | 0        | 0        | 63      | 4,125            | 63                    | 4,188       | 0.0%                 | 46.6                      |
| 111007           | Lake Huron Water Treatment Plant, Architectural Programming for                                         |              | 2011         | U                                         | U       | U       | U       | U        | U        | 0.5     | 1,123            | 0.5                   | 1,100       | 0.070                | 10.0                      |
| 111008           | Laboratory and Admin Building Improvements                                                              | FP           | 2017         | 0                                         | 0       | 0       | 0       | 0        | 0        | 0       | 1,299            | 0                     | 1,299       | 0.0%                 | 40.6                      |
|                  | Water Works Park Site/Civil Improvements                                                                | FP           | 2017         | 0                                         | 0       | 0       | 0       | 0        | 0        | 0       | 5,643            | 0                     | 5,643       | 0.0%                 |                           |
| 113000           | Southwest Water Treatment Plant Architectural and Building                                              |              | 2017         | U                                         | U       | U       | U       | U        | U        | U       | 5,015            | U                     | 5,015       | 3.0 70               | 3 J. F                    |
| 113007           | Mechanical Improvements                                                                                 | FP           | 2017         | 0                                         | 0       | 0       | 0       | 0        | 0        | 0       | 98               | 0                     | 98          | 0.0%                 | 36.0                      |
|                  | Future Planned Water Projects Total                                                                     |              |              |                                           |         | 5.750   | Ū       |          | Ü        | Ů       | 330,531          | Ū                     |             |                      | 30.0                      |
|                  | rature rainiea water riojeets rotar                                                                     |              |              | 11                                        | 318     | 3,730   | J,50T   | 10,717   | 0 1,0 17 | 55,110  | 550,551          | , 1,010               | 123,100     | I J. I /U            |                           |

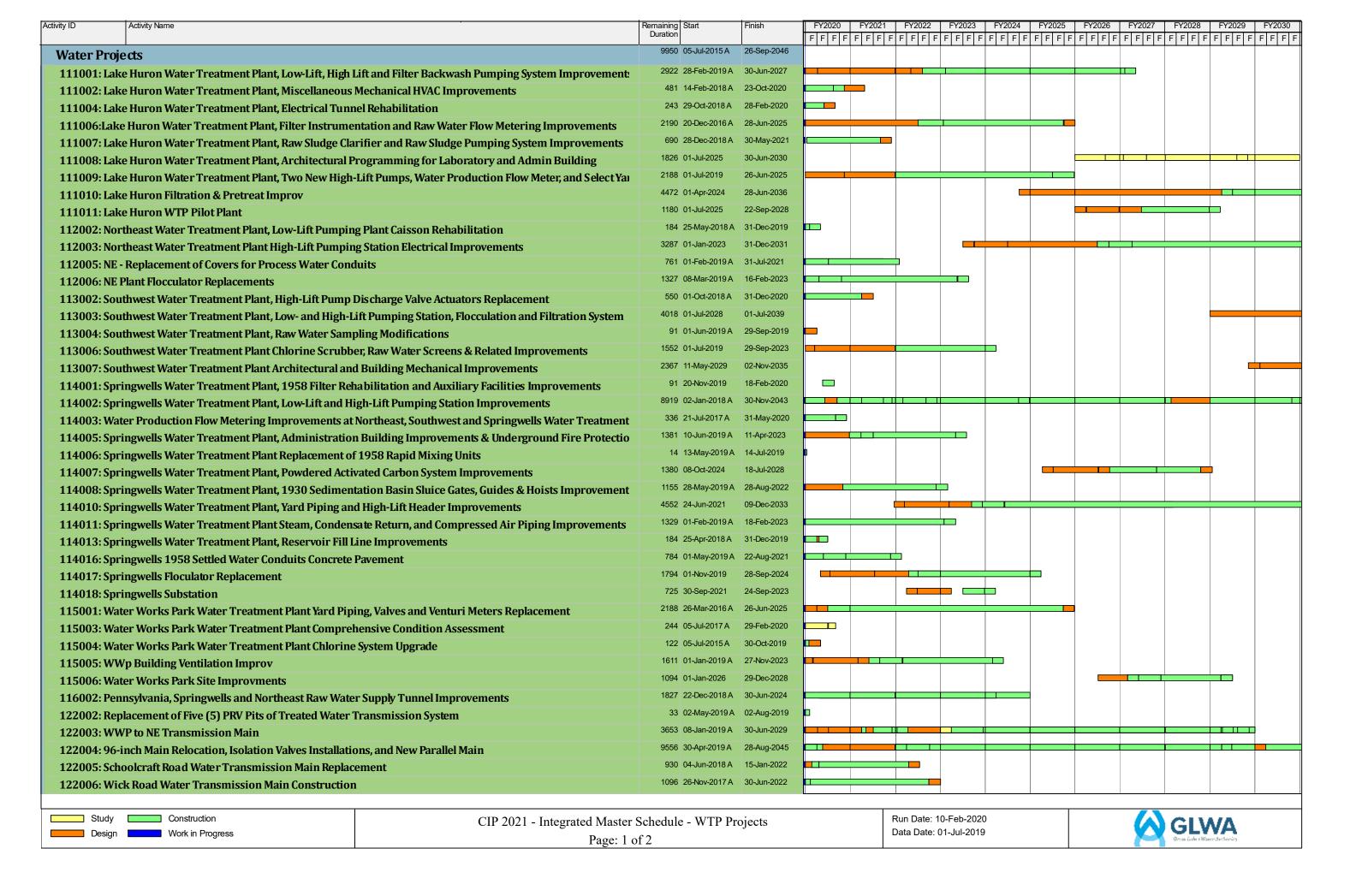


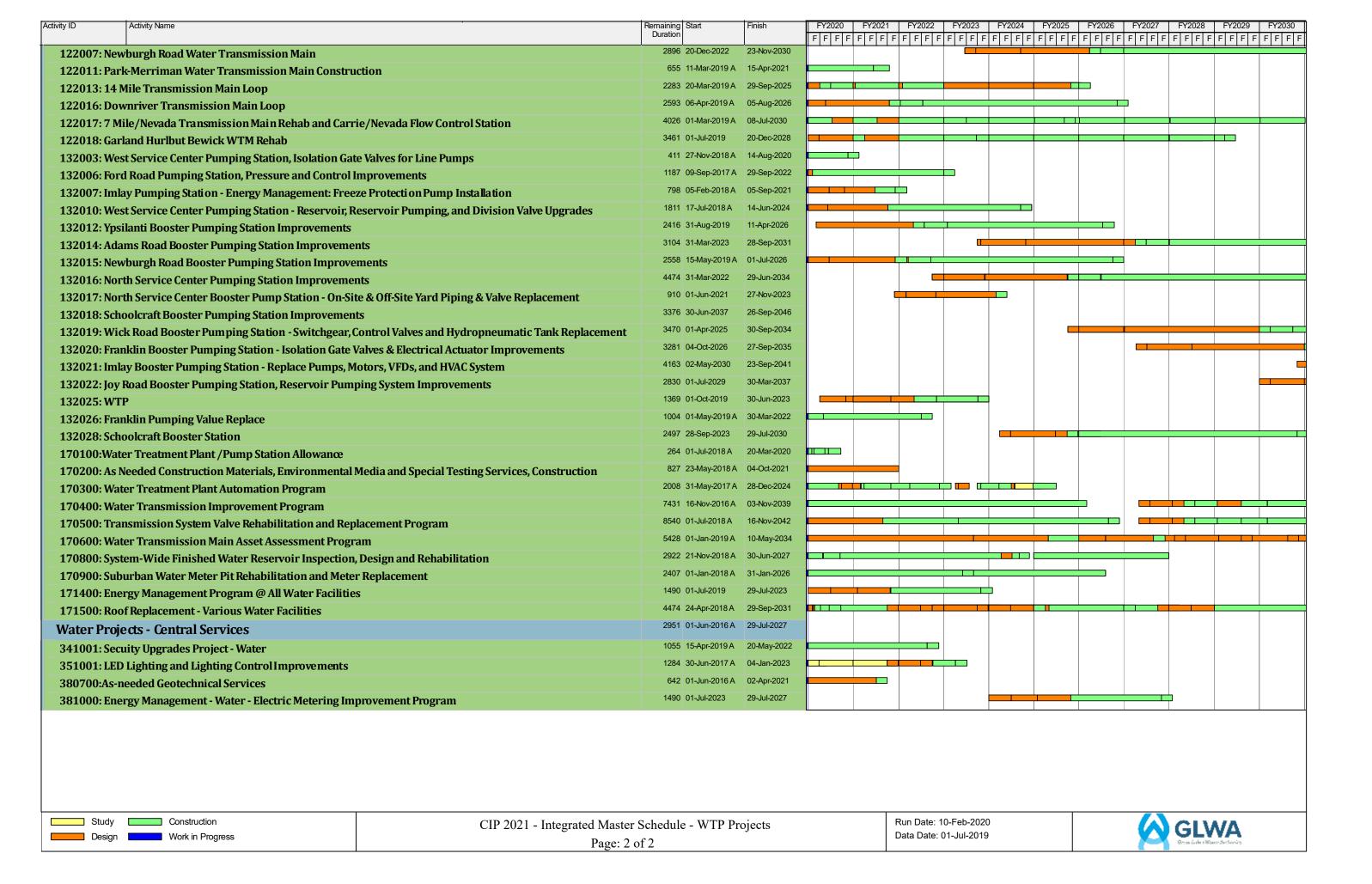
II CIP DEVELOPMENT + PROCESS

III FINANCE

IV CIP SUMMARY

V PRIORITIZATION VI I


CTS V


VII TEN-YEAR VIII PROJECT OUTLOOK DESCRIPTIONS

IX GLOSSARY

# **Table VI-4. Water CIP Projects: Totals**

|                                       | ual<br>19<br>1)                           |         | CILP    | Ę       | s//s    |         |         |                  |                      |             |                     |
|---------------------------------------|-------------------------------------------|---------|---------|---------|---------|---------|---------|------------------|----------------------|-------------|---------------------|
| Totals                                | Lifetime Act<br>Thru FY 201<br>(unaudited | FY 2020 | FY 2021 | FY 2022 | FY 2023 | FY 2024 | FY 2025 | FY 2026 & Beyond | 2021-2025 (<br>Total | Project Tot | Percent of W<br>CIP |
| Active Water Projects Total           | 177,763                                   | 90,754  | 141,764 | 171,086 | 182,891 | 181,420 | 162,623 | 378,666          | 839,784              | 1,486,967   | 89.8%               |
| Pending Closeout Water Projects Total | 11,797                                    | 0       | 0       | 0       | 0       | 0       | 0       | 0                | 0                    | 11,797      | 0.0%                |
| Future Planned Water Projects Total   | 11                                        | 318     | 5,750   | 8,584   | 18,749  | 31,347  | 30,116  | 330,531          | 94,546               | 425,406     | 10.1%               |
| Water Projects Total                  | 189.571                                   | 91.072  | 147.514 | 179.670 | 201.640 | 212.767 | 192,739 | 709.197          | 934.330              | 1.924.170   | 99.9%               |





The regional water system draws its water from the largest fresh water source in North America, the Great Lakes, with Lake Huron to the north, the Detroit River to the south and Lake St. Clair to the east. With access to nearly 2 billion gallons of high quality source water and with three separate intakes, the Authority has highly reliable and more than sufficient source water for current and projected demands.

The major components of the regional water system include three intake facilities, five treatment plants, an extensive conveyance system consisting of 816 miles of transmission mains throughout the service area, 19 booster pumping stations and 32 water storage reservoirs (14 at the water treatment plants and 18 at booster stations). Water flow and pressure throughout the Water System are monitored and controlled by a Systems Control Center located in the Central Services Facility.

# **Physical Facilities**

#### INTAKE FACILITIES

The Water System's three intake facilities are listed below and are generally in adequate to good working order and repair.

- The **Lake Huron intake**, located in Lake Huron, approximately 5 miles north of Port Huron and 5 miles into the lake, was placed in operation in 1974. This intake supplies raw water through a tunnel to the Lake Huron Water Treatment Plant.
- The **Belle Isle intake**, located at the eastern end of Belle Isle where Lake St. Clair flows into the Detroit River, was placed in operation in 1931. This intake supplies raw water to the Water Works Park, Springwells and Northeast Water Treatment Plants.
- The Fighting Island intake and tunnel, located under the Detroit River on the Canadian side just west of the northern end of Fighting Island, was placed in

operation in 1964. This intake supplies raw water to the Southwest Water Treatment Plant.

#### WATER TREATMENT PLANTS

Raw water from the intake facilities is treated at the regional water system's water treatment plants, which includes screening, filtering, bacteria control, and taste and odor control. Each of the five water treatment plants in the regional water system was constructed with the capability to treat the water in accordance with federal requirements under the Safe Drinking Water Act. In the opinion of the Authority, based upon physical evaluations conducted by its consultants, no significant improvements to the water treatment plants are presently required to meet such requirements. In addition, each treatment plant is equipped with its own laboratory facilities for the examination of drinking water which are recertified periodically (every three years) by the Michigan Department of Public Health. The treatment plants are more particularly described in the following table. A summary of the treatment plants is shown in Table VI-6 on the following page.

Table VI-6. Treatment plant history and rated capacity

| Plant            | Placed in<br>Operation | Maximum Rated<br>Capacity (MGD) |
|------------------|------------------------|---------------------------------|
| Lake Huron       | 1974                   | 400                             |
| Southwest        | 1964                   | 240                             |
| Northeast        | 1956                   | 300                             |
| Springwells      | 1931/1958              | 540                             |
| Water Works Park | 2003                   | 240                             |

#### WATER DELIVERY SYSTEM

The Authority operates and maintains a regional water system consisting of 816 miles of main including most of the transmission mains within the City limits and certain transmission mains throughout the wholesale service area. The regional water system connects with the transmission and distribution mains owned and operated by the wholesale municipal member partners including the City of Detroit.

The transmission system is laid out to provide adequate pressures that are reinforced by use of booster stations and reservoirs, where necessary. Much of the transmission system is interconnected and flow of water can be controlled, particularly in emergency conditions, to flow in either direction by opening or closing valves. Water pressures can be boosted to overcome typical losses due to an emergency situation.

#### MONITORING FACILITIES

The Water System Control Center controls and monitors the transmission of water throughout the regional water system. Operators in the Systems Control Center can remotely control the pump stations at the treatment plants and the 19 booster stations to adjust flows and pressures to meet the changing demands of member partner communities.

## Regional Water System Master Plan

The Water Master Plan Update was accepted by the GLWA Board on August 24, 2016. This plan was materially completed in 2015 (the "2015 Water Master Plan Update" or the "Update") with final closeout in 2016. Member Partner communities were engaged in the preparation of the 2015 Water Master Plan Update. This provided a broader perspective utilizing the region's entire infrastructure for public benefit to leverage existing infrastructure before investing in new infrastructure. The 2015 Water Master Plan Update has been utilized to develop the Regional Water System CIP.

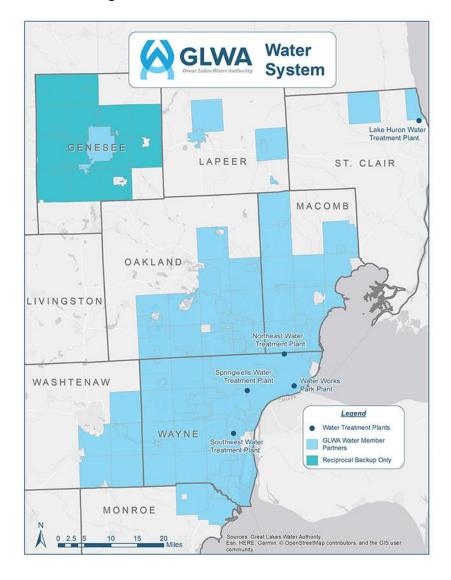
The 2015 Water Master Plan Update, which covers a period of 20 years, instead of the 50 years of prior master plans, recognizes the national trend of declining demand. A key focus was to establish a strategic infrastructure and operating plan associated with this reality. The update recommended right-sizing the capacity of the regional water system based on the current lower projections of population and water volumes.

The 2015 Water Master Plan Update found that the Authority's combined water treatment plant design capacity was estimated to be over 60 percent greater than the forecasted 20-year water demands. The total rated capacity of the existing five water treatment plants is 1.7 billion gallons per day. The 2015 Master Plan Update identified likely maximum demands in the range of up to 1.0 billion gallons per day during the 20-year planning period. This provided the rationale to evaluate the possibility of repurposing one or more water treatment plants to strategically align capacity and service requirements and planning for structural de-rating of capacity as warranted at the remaining four water treatment plants. The 2015 Master Plan Update recommended converting the existing Northeast Water Treatment Plant into a storage and pumping facility, thereby eliminating the need to invest in improvements that would otherwise be required to maintain rated capacity, and investing in the four remaining water treatment plants.

The 2015 Water Master Plan Update is designed to provide the System with flexibility to meet multiple growth scenarios and regulatory changes in the future, furthering GLWA's sustainability goals. Realigning water treatment plant capacity with forecasted demands will require additions and modifications to the existing water transmission system. The first five years of the 2015 Water Master Plan Update contain several capital projects related to the additions and modifications to the existing water transmission system, a number of which are in the GLWA 2021-2025 CIP. An example of the update's financial benefits is an estimated \$400 million of capital cost avoidance. In August 2016, the 2015 Water

Master Plan Update was further updated to decommission and repurpose the Northeast Water Treatment Plant, provide a new transmission system serving the Authority's northeast service area and add enhanced water System redundancy and long-term serviceability to a large (96 inch) water main through completion of a repair, relocation and isolation valve installation project for that water main.

#### Service Area and Member Partners


The Authority currently provides wholesale water services in a service area encompassing 981 square miles and serves all or a portion of eight Michigan counties in southeast Michigan, including Oakland, Macomb, Wayne, Lapeer, Genesee, Washtenaw, St. Clair and Monroe Counties. Figure VI-1 displays GLWA's service area. Approximately 4 million people, or nearly 40 percent of the total population of the State of Michigan, live in the Authority's water service area. Suburban member partners comprise approximately 82 percent of the population served by the Authority, and the City of Detroit comprise the remainder served by the Authority. Under certain circumstances, subject to the Authority's System optimization guidelines, the Authority's water service area may be expanded to include additional communities. The Authority's member partner communities are served via wholesale service contracts and the City retail customer class is served via the terms of the Water and Sewer Services Agreement.

### Wholesale Water Member Partners

The member partners of the regional water system include 127 communities served through various forms of contracts. The City of Detroit is served pursuant to the Water and Sewer Services Agreement. To date, model contracts for 78 of the 88 wholesale member partners have been negotiated, approved, and are in effect. Of the other 10 wholesale member partners, 7 are served under older contract structures, the Genesee County Drain Commissioner is served via a 30-year Reciprocal Backup Water

Service Contract and 2 members receive water services on a noncontract basis.

Figure VI-1. GLWA water service area



The 78 member partners served by the new model contracts comprise over 92% of total billed revenues from regional water system wholesale member partners (exclusive of Detroit).

The model water service contracts generally provide for (i) delivery of water by the Authority to the wholesale member partner at designated metered points at specified rates of flow and pressure and (ii) payment by the wholesale member partner for all water supplied at reasonable charges established by the Authority. The Authority is responsible for meeting all water quality requirements at the designated metered points. The wholesale member partner is solely responsible for distributing water from the points of delivery to its retail customers, for local billing, collection and rate setting.

The model contracts have a 30-year initial term and automatically renew for an additional 10-year term unless a party to the contract provides written prior notice of intent to terminate at least five years prior to the end of the then-current contract term. In the event of an early termination, the model contract provides that wholesale member partners are liable to GLWA for the payment of any costs incurred by the Authority related to the provision of services to the member partner community, unless the termination is for cause, in which case GLWA has cure rights. The model contract provides that GLWA has no responsibility for distributing, operating, repairing, replacing or maintaining any portion of the member partner community's retail water or wastewater system, that GLWA shall be the sole supplier of service to the member partner's service area and that the member partner is prohibited from commingling Authority water with water from any other source without the prior approval of GLWA.

The model contracts also provide that the Water Technical Advisory Committee (the "TAC"), established to facilitate a cooperative working relationship between GLWA and its member partner communities, will remain in place for the contract term.

In addition, the model contracts include other provisions required for the orderly operation of an integrated water supply and distribution system such as the following: (i) restrictions on redistribution outside the limits of the particular municipality or other public entity without the consent of the Authority; (ii) measurement of water furnished by meters; (iii) the metered flow of water is the basis for billing; (iv) prohibition against combining of regional water system supplied water with water from any other source without prior written approval of the Authority to ensure a uniform quality of water throughout the area; (v) municipal acceptance of the Authority's standards for construction of distribution mains and Authority approval of construction plans therefor to ensure a uniform standard throughout the area; (vi) Authority commitments regarding notification of rate changes; (vii) payment and late payment terms; (viii) delineation of maintenance responsibilities; (ix) specific water pressure commitments by the Authority; and (x) maximum day, peak hour and annual volume commitments by the wholesale member partner.

# 1.1. Water Treatment Plants & Facilities

GLWA operates and maintains five water treatment facilities that provide water to GLWA member partner communities in Southeast Michigan. The Springwells, Northeast, Southwest, Lake Huron, and Water Works Park Water Treatment Plants have a maximum rated treatment capacity of 1,720 million gallons per day and firm high service pumping capacity of 2,400 million gallons per day. The high service pumping capacity exceeds the rated treatment capacity to assist in meeting peak hourly demands from finished water storage. Applicable treatment and pumping capacities and other data can be seen in Table VI-7 on the following page.

Four of the five plants (Northeast, Springwells, Southwest and Water Works Park) are conventional treatment facilities with the following process trains: rapid mix, coagulation, flocculation,

V PRIORITIZATION

sedimentation, granular media filtration, and disinfection. Lake Huron is the only facility operated as a "modified direct filtration" plant, which means the sedimentation basins do not require a minimum detention time of 4 hours. In addition, Water Works Park is the only plant that employs intermediate ozonation for primary disinfection control. All five plants use the same chemical systems including alum for coagulation, chlorine for pre-oxidation and primary disinfection (excluding Water Works Park), powdered activated carbon (PAC) for taste and odor (T&O) control, phosphoric acid for corrosion control, and fluoride for dental health protection. Polymers are also added at several facilities to enhance coagulation and filtration as well as for thickening and dewatering of alum residuals. Two of the five plants, Southwest and Water Works Park, employ automated residuals removal from the sedimentations basins. The residuals

are thickened and dewatered on site along with backwash wastewater, and disposed of at landfills. Lake Huron's basins are cleaned manually on an annual basis and the sludge is discharged to the sludge drying lagoons. The lagoons also receive thickened solids from the waste wash water treatment facility, which processes filter backwash wastewater. The Springwells and Northeast plants do not have automated alum residuals collection in the sedimentation basins or a thickening treatment process on site for alum residuals or backwash wastewater. At both facilities, the basins have been manually cleaned on an annual or biannual basis and the solids discharged to the wastewater collection system; backwash wastewater is also discharged to the wastewater collection system.

Table VI-7. Water Treatment Plant Capacity, Finished Water Storage and Areas Served Summary

| Facility                | Year Placed in<br>Service              | Rated<br>Maximum<br>Treatment<br>Capacity (MGD) | Firm High Service<br>Pumping Capacity<br>(MGD) | Total Finished<br>Water Storage<br>Volume (MG) | Areas Served                                                                                                                  |
|-------------------------|----------------------------------------|-------------------------------------------------|------------------------------------------------|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Springwells<br>WTP      | 1931 First Train;<br>1958 Second Train | 540(1)                                          | 260, IPD*<br>450, HPD*                         | 60                                             | Detroit, Northern Wayne County, Eastern Washtenaw County, Oakland<br>County, Southeastern Macomb County, Western Wayne County |
| Northeast<br>WTP        | 1956                                   | 300                                             | 400                                            | 30                                             | Northeast Detroit/Wayne County, Southern Macomb County,<br>Southeast Oakland County                                           |
| Southwest<br>WTP        | 1964                                   | 240                                             | 310                                            | 30                                             | Southern Wayne County, Northern Monroe County, Eastern<br>Washtenaw County                                                    |
| Lake Huron<br>WTP       | 1974                                   | 400                                             | 420                                            | 44                                             | Genesee County, Lapeer County, St. Clair County, Macomb County,<br>Oakland County                                             |
| Water Works<br>Park WTP | 2003                                   | 240                                             | 560                                            | 28                                             | Eastside of Detroit, Eastern Wayne County                                                                                     |
| Syste                   | em Totals:                             | 1,720                                           | 2,400                                          | 192                                            | *IPD = Intermediate Pressure District, HPD = High Pressure District                                                           |

### 1.1.1. Lake Huron Water Treatment Plant

The Lake Huron Water Treatment Plant began full-scale operations in 1974. The plant is located at 3993 Metcalf Road in Fort Gratiot, Michigan. The Lake Huron plant was designed to be

easily expandable to meet the needs of growing populations in the communities it serves to the north of Detroit. In 2004, after completion of a pilot study along with various upgrades to the process trains, the MDEQ rated the maximum capacity of Lake

Huron at 400 MGD. Lake Huron is the only GLWA facility that is operated in "modified" direct filtration mode. The sedimentation

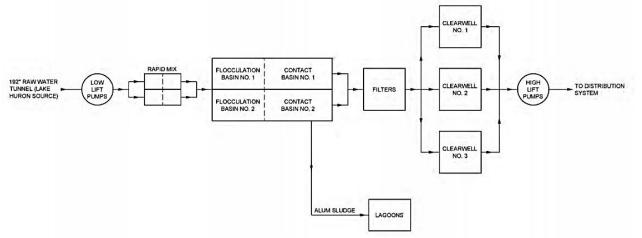



Figure VI-2. Lake Huron WTP process diagram

basins do not meet 10-State standards and thus are not considered to be true settling basins by the MDEQ. The raw water source for the plant is Lake Huron. The raw water tunnel is designed for a maximum capacity of 1200 MGD and 800 MGD during cold weather. The plant was constructed with provisions to increase the capacity by adding additional process trains and pumping units to obtain the maximum production capacity of 1200 MGD. In the early 2000's a variety of process treatment improvements were constructed at the Lake Huron Water Treatment Plant. These improvements included new high lift and backwash water pumps (including discharge piping and valves), rehabilitation of two clear wells and the high service suction well, filtration capacity improvements, pretreatment improvements and filter control modification, and a new treatment facility for filter backwash wastewater.



Figure VI-3. Lake Huron WTP

+ PROCESS

### 1.1.2. Northeast Water Treatment Plant

The Northeast Water Treatment Plant at 11000 E. Eight Mile Road in Detroit became the former Detroit Water System's third water treatment plant. Dedicated in 1956, the plant was built to meet the needs of suburban communities located east and north of the city. The source of raw water is the Belle Isle intake, located in the Detroit River, which also serves Springwells and Water Works Park. The raw water is chlorinated, fluoridated and screened at Water Works Park before it flows to Northeast by gravity. Low lift pumps lift the raw water to the process trains, which operate in parallel. With a maximum rated capacity of 300 MGD, the plant process trains consist of rapid mix, flocculation, sedimentation, and dual-media gravity filtration.



Figure VI-4. Northeast WTP

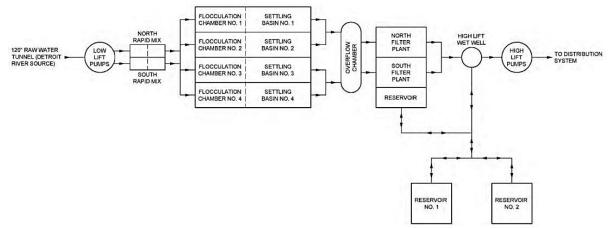



Figure VI-5. Northeast WTP process diagram

III FINANCE

### 1.1.3. Southwest Water Treatment Plant

Detroit's fourth water treatment plant, Southwest, located at 14700 Moran Road in Allen Park, became operational in 1964. The Southwest Water Treatment Plant was constructed in 1963, at which time it was owned and operated by Wayne County. Through an agreement with Wayne County, the City of Detroit purchased this plant to regionalize water services in Southeast Michigan. Raw water for Southwest flows by gravity from the Detroit River through an intake at Fighting Island. The plant has a rated capacity of 240 MGD. The original plant was designed with the ability to be upgraded to 320 MGD via equipment replacement. There are also spare raw water conduits that can accommodate an expansion up to 480 MGD. The low lift pumps lift the raw water for treatment through the process trains, which operate in parallel. The Southwest Water Treatment Plant also has a Residuals Handling Facility to treat filter backwash wastewater and alum sludge residuals.



Figure VI-6. Southwest WTP

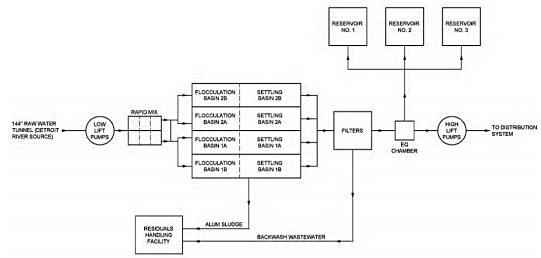



Figure VI-7. Southwest WTP process diagram

III FINANCE

#### Springwells Water Treatment Plant 1.1.4.

The Springwells Water Treatment Plant at 8300 W. Warren Avenue in Dearborn is the oldest of the GLWA water treatment facilities. At the time of its dedication in 1935, it was the largest water treatment facility in the world. The first train was constructed in 1930 and has a maximum rated capacity of 340 MGD and the second train constructed in 1958 has a maximum rated capacity of 200 MGD, for a total capacity of 540 MGD. Like Northeast, the Springwells plant receives its raw water from the Belle Isle Intake. The raw water influent is screened, chlorinated and fluoridated at Water Works Park before it is conveyed to Springwells. The low lift pumps lift the raw water for treatment through the process trains, which operate independently. The 1930 train provides hydraulic mixing through a baffled chamber for rapid mixing while the 1958 train has mechanical rapid mixers. Both trains have flocculation, sedimentation and filtration

treatment units. A major project to upgrade the Springwells plant, SP-563, is currently underway and should be closed out in 2020. This project includes a complete replacement of the 1958 filters and a limited replacement of some of the 1930 filters. A laboratory upgrade. piping other vard and site improvements. and electrical improvements are also included in this project.



Figure VI-8. Springwells WTP

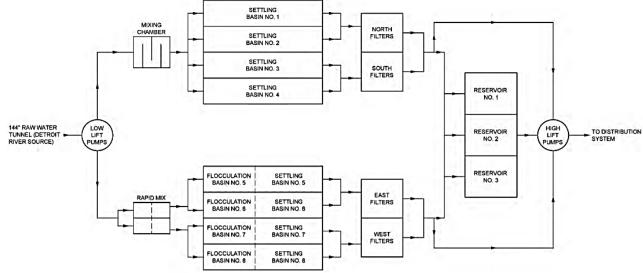



Figure VI-9. Springwells WTP process diagram

### 1.1.5. Water Works Park Water Treatment Plant

Water Works Park Water Treatment Plant can produce up to 240 million gallons of superior quality drinking water per day (MGD) with room for expansion to 320 MGD. The end result of the city's \$275 million investment in this state-of-the-art facility is water the way it is meant to be: colorless, odorless, and great tasting; even better tasting than the water for which DWSD has been justifiably lauded for more than 150 years.

GLWA's newest water treatment plant is located at 10100 E. Jefferson Avenue in Detroit. Water Works Park II began operating in 2003 as a conventional surface water treatment plant. The original Water Works Park water treatment plant was razed and a new facility was constructed on the same site. The raw water source for the plant is the Belle Isle intake on the Detroit River. The plant has a maximum rated capacity of 240 MGD and is

GLWA's first facility with ozone disinfection facilities, as well as a Residuals Handling Facility to treat filter backwash wastewater and alum sludge residuals. Water Works Park is the largest plant in Michigan to use ozone as a disinfectant. The plant designed was independent process trains - a minimum of two process units provided for each treatment process. In addition. all conveyance facilities such as pipelines,



Figure VI-10. Water Works Park WTP

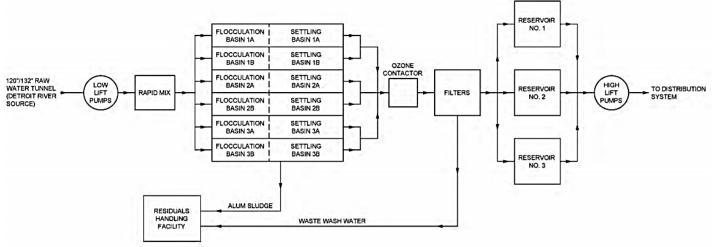



Figure VI-11. Water Works Park process diagram

junction chambers, channels, and wet wells are configured to provide a minimum of two treatment pathways.

# 1.1.6. General Purpose

Refer to the General Purpose description on page II-6.

#### 1.2. Field Services

## 1.2.1. General Purpose

Refer to the General Purpose description on page II-6.

## 1.2.2. Transmission System

The Regional Water Transmission System (RWTS) consists of approximately 803 miles of water main typically 24-inch and greater with the responsibility for the transport of potable water from the five water treatment facilities to the regional wholesale water member partner communities and the City of Detroit.

Figure VI-12, Figure VI-13, and Figure VI-14 depict the potable transmission main inventory by material, diameter, and decade installed/age, respectively. The RWTS ranges from 4 to 120 inch in diameter with an average age of 69 years. Additionally, there are approximately 23 miles of raw water transmission main ranging from 120 to 186 inch in diameter supplying the five water treatment plants from the three raw water intakes.

Most of RTWS is Prestressed Concrete Cylinder Pipe (54%), Cast Iron Pipe (19%), and Steel Pipe (17%). The majority of RTWS are typically 24 inches and larger, of which 24 inch (20%), 42 inch (15%), and 48 inch (13%) are the most common diameters; however, some smaller diameter pipe exists on site at the treatment and pumping facilities and limited areas of the system to maintain needed connectivity. Detroit and the region went through several growth periods of time evidenced by the greatest periods of water main installation of the 1960s (32%), 1920s (19%) and 1950s (11%).

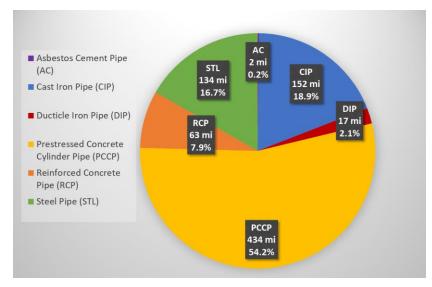



Figure VI-12. Transmission system inventory by material

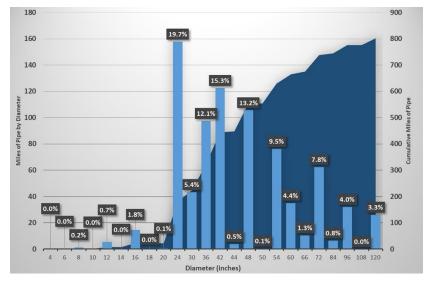



Figure VI-13. Transmission system inventory by diameter

III FINANCE

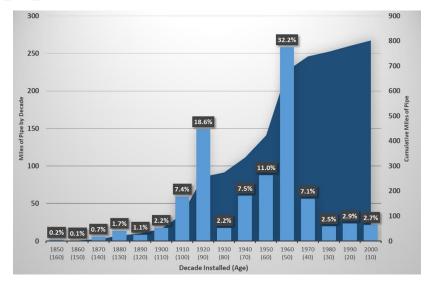



Figure VI-14. Transmission system inventory by decade installed / age

### **Water Transmission Main Pipe Integrity Program**

Given the large transmission main size (24-inch and greater) and the significant population served, pipeline failures have a significant consequence. Previously, a traditional approach to manage deteriorating pipes has been to perform large-scale capital improvement projects to replace the mains. However, this strategy has been shown to be resource-consuming and often ends with the replacement of pipes that may still have significant remaining useful life. GLWA has chosen a more fiscally responsible asset management strategy to implement a pipeline integrity program, which consists of condition assessment and targeted repair, replace or renewal of pipelines to mitigate the risk of pipe failure.

In this predictive approach, refer to Figure VI-15, GLWA's implementation of the pipe integrity program will minimize both the probability and consequence of pipeline failures. The program includes a pipeline risk assessment of each transmission main to

determine the priority, as well as recommendations on implementation and execution of a condition assessment and renewal program. This baseline risk assessment of GLWA's transmission system was accomplished by calculating the consequence and probability of failure for each pipeline operated by GLWA, then prioritizing the pipelines based on the total risk.

It is anticipated that GLWA's holistic pipeline integrity program will minimize transmission failures overall, however due to the nature of buried pressure pipe, some pipe breaks may not be preventable, regardless of the intensity of the program. As such and like most utility owners, GLWA will continue to be exposed to the risk of pipeline failure. Operational practices that minimize the consequences of a pipe break, such as a valve exercising program or maintaining a minimum inventory of replacement pipes, continue to be in place.

Each segment of transmission main planned for assessment has both capital and O&M related projected expenses. The capital expenses related to actual repairs of the pipe resulting from the assessment or from the installation of monitoring equipment are accounted for within the CIP. 0&M budget related items consist of projected expenses related to the planning of the condition assessment itself, development of a detailed inspection plan, contingency and communication plan for each segment, performing the actual condition assessment and any annual monitoring fees for the installed assessment equipment. A significant effort is required within each pipe assessment to communicate and coordinate activities with member partners to ensure continuity of service to the extent possible during the assessment. In addition, it is critical to evaluate appropriate technologies and approaches to successfully perform the condition assessment that provides an appropriate level of information while maintaining the highest water quality and levels of service.



Figure VI-15. Proposed transmission system program cycle

Figure VI-18 depicts only those water transmission mains operated/maintained (leased) by GLWA within the City of Detroit. Figure VI-19 depicts the water transmission mains operated/maintained (leased) by GLWA over the entire service area. The suburban communities own, operate, and maintain all of their transmission and distribution systems from the points of connection to the RWTS.

# 1.3. Systems Control Center

# 1.3.1. General Purpose

Refer to the General Purpose description on page II-6.

# Pressure Reducing Valve (PRV)

Pressure Reducing Valves (PRV) regulate water pressure at critical locations throughout the Regional Water Transmission System. Pressure reduction is needed to protect portions of the Water System from being impacted by above normal operating pressures. Downstream of the PRVs, pressure is maintained at a relatively consistent lower pressure.

# **Pressure Monitoring Site**

Fifty-three Pressure Monitoring Sites in the transmission system provide suction/upstream and discharge/downstream pressure readings to aid in system operation.

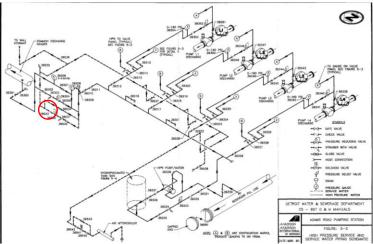



Figure VI-16. Adams Road Pumping Station: PRVs can be seen throughout drawing. The one circled for example reduces pressure before feeding to service water line.

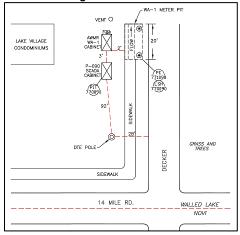



Figure VI-17. Pressure Monitoring Site at 14 Mile and Decker.





Figure VI-18. GLWA Leased Water Assets inside the City of Detroit

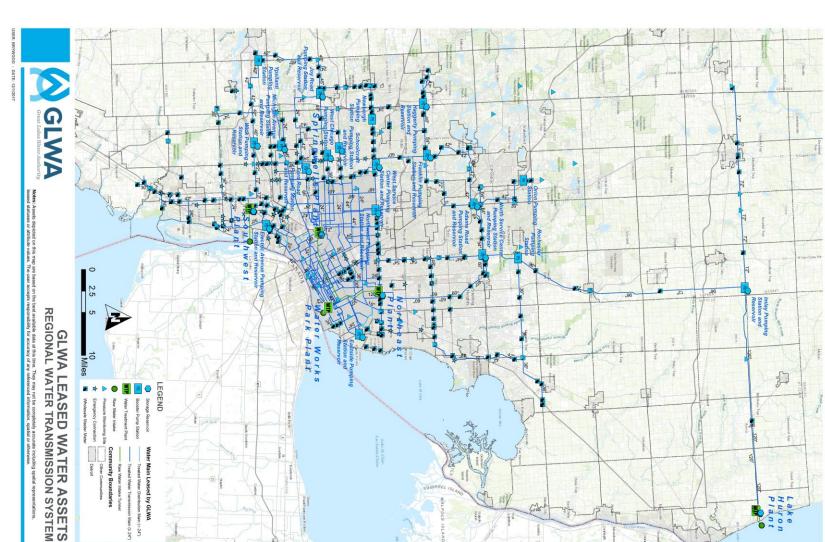



Figure VI-19 . GLWA Leased Regional Water Assets

# 1.3.2. Pump Stations & Reservoirs Water Booster Station

Booster stations are located within the regional System and distribute water received from the Water Treatment Facilities to communities and other stations to meet pressure and demand requirements. Some water is diverted to reservoirs at the station until needed during times of high demand. Pumping stations repump the water in transmission mains and reservoirs to maintain these pressures. There are 19 water booster stations in the GLWA transmission system.

# Adams Road Pump Station

V PRIORITIZATION



Figure VI-20. Adams Road Pump Station

The Adams Road Station consists of a pump house and a primary unit substation. The station's purpose is to increase the pressure in the 42-inch water main running along Adams Road. The station is fed by the North Service Center Station, which receives its water from the Lake Huron Water Treatment Plant through the Imlay Station. The discharged water from the station flows north through the 42-inch water main along Adams Road. The station serves the member partner communities of Rochester Hills, Auburn Hills, Pontiac, as well as Bloomfield Hills and West Bloomfield, during high demand periods.

| Elevation          | 881.50                              |
|--------------------|-------------------------------------|
| Suction Pressure   | 40 - 55 psi                         |
| Discharge Pressure | 120 -150 psi                        |
| Reservoir Capacity | 10 MG                               |
| Reservoir Pumps    | R1 - 1500 Hp, 10 MGD, 350 TDH       |
|                    | R2 - 1500 Hp, 10 MGD, 350 TDH       |
| Line Pumps         | L1 - 750 Hp, 18.2 MGD, 191 TDH, VFD |
|                    | L2 - 750 Hp, 18.2 MGD, 191 TDH      |
|                    | L3 - 750 Hp, 18.2 MGD, 191 TDH      |
|                    | L4 - 750 Hp, 14 MGD, 191 TDH        |
| Electric Feeds     | 2                                   |

III FINANCE

# **Eastside Pump Station**



Figure VI-21. Eastside Pump Station

The Eastside Pump Station consists of a pump house and a reservoir. The purpose of the station is to store water during the off-peak hours and use the stored water to supplement the supply during the hours of high demand. The discharged water from the station flows through the 36-inch water main along Canyon Avenue. The station serves the communities of East Detroit and Grosse Pointe.

| Elevation          | 579.26                      |
|--------------------|-----------------------------|
| Suction Pressure   |                             |
| Discharge Pressure | 55 - 70 psi                 |
| Reservoir Capacity | 10 MG                       |
| Reservoir Pumps    | R1- 350 Hp, 10 MGD, 350 TDH |
|                    | R2- 350 Hp, 10 MGD, 350 TDH |
|                    | R3- 350 Hp, 10 MGD, 350 TDH |
| Electric Feeds     | 1                           |

# **Electric Avenue Pump Station**



Figure VI-22. Electric Avenue Pump Station

The Electric Avenue Pumping Station increases the water pressure in the 36-inch water main running along Electric Avenue. The station receives its water from the intermediate pressure district of the Southwest Water Treatment Plant. Water from Electric Avenue Pump Station serves the communities of Lincoln Park, Southgate, Riverview, and Trenton.

| Elevation          | 577.71                         |
|--------------------|--------------------------------|
| Suction Pressure   | 55 - 70 psi                    |
| Discharge Pressure | 55 - 80 psi                    |
| Reservoir Capacity | 2 X 3.3 MG                     |
| Reservoir Pumps    | R3 - 200 Hp, 5.56 MGD, 150 TDH |
|                    | R4 - 300 Hp, 5.56 MGD, 150 TDH |
| Line Pumps         | L1 - 100 Hp, 5.04 MGD, 75 TDH  |
|                    | L2 - 100 Hp, 5.04 MGD, 75 TDH  |
| Electric Feeds     | 2                              |

+ PROCESS

# **Haggerty Pump Station**



Figure VI-23. Haggerty Pump Station

The Haggerty Pumping Station consists of a pump building, 10-million gallon aboveground reservoir, and exterior primary power area. The primary purpose of the station is to boost water pressure and increase flow to the existing water main. The station also has the capacity to provide an emergency supply of water of up to 28 MGD emergency demand in the event of a water main break between Haggerty and Franklin pumping stations. When operating at full capacity during periods of high demand, the Haggerty Pumping Station will boost the transmission system pressure in the existing 42-inch water main serving City of Novi, Commerce Township, City of Walled Lake, City of Wixom, West Bloomfield, and Wolverine Lake.

| Elevation          | 880.00                              |
|--------------------|-------------------------------------|
| Suction Pressure   | 55 - 100 psi                        |
| Discharge Pressure | 80 - 105 psi                        |
| Reservoir Capacity | 10 MG                               |
| Reservoir Pumps    | R1 - 700 Hp, 14 MGD, 200 TDH        |
|                    | R2 - 700 Hp, 14 MGD, 200 TDH        |
| Line Pumps         | L1 - 700 Hp, 21 MGD, 100 TDH, VFD   |
|                    | L2 - 700 Hp, 21 MGD, 100 TDH, VFD   |
|                    | L/R3 - 700 Hp, 21 MGD, 100 TDH, VFD |
| Electric Feeds     | 2                                   |

# Ford Road Pump Station



Figure VI-24. Ford Road Pump Station

The Ford Road Station consists of a pump house and a reservoir that stores water to supplement the normal water supply during high demand periods. The station receives water from the intermediate district of the Springwells Water Treatment Plant. The station increases the pressure in the 48-inch water main running along Ford Road. Dearborn Heights, Garden City, Westland, Inkster, and parts of Canton Township are serviced by Ford Road Pump Station.

| Elevation          | 618.26                           |
|--------------------|----------------------------------|
| Suction Pressure   | 35 - 50 psi                      |
| Discharge Pressure | 75 - 95 psi                      |
| Reservoir Capacity | 10 MG                            |
| Reservoir Pumps    | R6 - 450 Hp, 10.08 MGD, 210 TDH  |
|                    | R7 - 450 Hp, 10.08 MGD, 210 TDH  |
|                    | R8 - 450 Hp, 10.08 MGD, 210 TDH  |
|                    | R9 - 450 Hp, 10.08 MGD, 210 TDH  |
|                    | R10 - 450 Hp, 10.08 MGD, 210 TDH |
| Line Pumps         | L1 - 250 Hp, 18.14 MGD, 60 TDH   |
|                    | L2 - 250 Hp, 10.08 MGD, 120 TDH  |
|                    | L3 - 250 Hp, 10.08 MGD, 120 TDH  |
|                    | L4 - 250 Hp, 10.08 MGD, 120 TDH  |
|                    | L5 - 250 Hp, 10.08 MGD, 120 TDH  |
| Electric Feeds     | 2                                |

# Franklin Pump Station



Figure VI-25. Franklin Pump Station

The Franklin Pumping Station consists of a pump house and reservoir. The station increases pressure in the 42-inch water main running north and the 54-inch water main running south along Inkster Road. The 60-inch main comes from the high pressure district of the West Service Center that, in turn, is fed by the Northeast and Springwells Water Treatment Plants. The station also stores water to supplement normal supply during the peak demand periods. The station serves Farmington Hills, Franklin Township, Bloomfield, and West Bloomfield.

| Elevation          | 832.58                        |
|--------------------|-------------------------------|
| Suction Pressure   | 35 - 60 psi                   |
| Discharge Pressure | 135 - 155 psi                 |
| Reservoir Capacity | 10 MG                         |
| Reservoir Pumps    | R1 - 1570 Hp, 22 MGD, 320 TDH |
|                    | R2 - 1570 Hp, 22 MGD, 320 TDH |
| Line Pumps         | L1 - 2000 Hp, 30 MGD, 250 TDH |
|                    | L2 - 2000 Hp, 30 MGD, 250 TDH |
|                    | L3 - 2000 Hp, 30 MGD, 250 TDH |
|                    | L4 - 2000 Hp, 30 MGD, 250 TDH |
| Electric Feeds     | 2                             |

# Michigan Avenue Pump Station



Figure VI-26. Michigan Avenue Pump Station

The Michigan Avenue Pumping Station increases the water pressure in the 36-inch water main running along Michigan Avenue. The 36-inch water main is supplied by the intermediate pressure district of the Springwells Water Treatment Plant and when demand requires it, by the Southwest Water Treatment Plant intermediate pressure district. The station also stores water to supplement the normal water supply during peak demand periods. Water from Michigan Avenue Station serves the communities of Canton and Wayne.

| Elevation          | 638.10                         |
|--------------------|--------------------------------|
| Suction Pressure   | 40 - 60 psi                    |
| Discharge Pressure | 55 - 75 psi                    |
| Reservoir Capacity | 1X 3.5 MG                      |
| Reservoir Pumps    | R4 - 350 Hp, 8.64 MGD, 150 TDH |
|                    | R5 - 350 Hp, 8.64 MGD, 150 TDH |
| Line Pumps         | L1 - 75 Hp, 3.60 MGD, 90 TDH   |
|                    | L2 - 75 Hp, 3.60 MGD, 90 TDH   |
|                    | L3 - 125 Hp, 4.32 MGD, 110 TDH |
| Electric Feeds     | 2                              |

II CIP DEVELOPMENT

+ PROCESS





Figure VI-27. Joy Road Pump Station

The Joy Road Pumping Station consists of one pump house, two reservoirs, and one primary unit substation. The purpose of the station is to increase the pressure in the 48-inch water main running along Joy Road. The station is fed by the Ford Road and Schoolcraft stations, which are fed by the Springwells Water Treatment Plant. The discharged water from the station flows west through the 48-inch water main along Joy Road to Sheldon Road. Then, the water main runs north along Sheldon Road to Eight Mile in Northville. The station serves the member partner communities of Plymouth and Northville and the townships of Plymouth, Northville, and Canton.

| Elevation          | 686.00                                |
|--------------------|---------------------------------------|
| Suction Pressure   | 35 - 55 psi                           |
| Discharge Pressure | 130 - 150 psi                         |
| Reservoir Capacity | 2 X 5 MG                              |
| Reservoir Pumps    | R1 - 1200 Hp, 16.13 MGD, 332 TDH      |
|                    | R2 - 1200 Hp, 16.13 MGD, 332 TDH      |
|                    | R3 - 1250 Hp, 14.8 MGD, 332 TDH       |
| Line Pumps         | L1 - 1050 Hp, 15.84 MGD, 288 TDH, VFD |
|                    | L2 - 1050 Hp, 15.84 MGD, 288 TDH      |
|                    | L3 - 1000 Hp, 14.8 MGD, 288 TDH       |
| Electric Feeds     | 2                                     |

# **Imlay Pump Station**



Figure VI-28. Imlay Pump Station

The Imlay Pumping Station consists of a pump house and reservoir. The station maintains the required water pressure in the 72-inch supply line to the Flint area and the 96-inch supply line to North Service Center Pumping Station. The station receives water through a 120-inch water main from the Lake Huron Water Treatment Plant. It also stores water to supplement the water supply during the high demand period. The supply water can bypass the station and go directly from the 120-inch main to the 96- and 72- inch water mains.

| Elevation          | 787.87                              |
|--------------------|-------------------------------------|
| Suction Pressure   | 65 - 95 psi                         |
| Discharge Pressure | 85-w/-75-170-s psi                  |
| Reservoir Capacity | 18 MG                               |
| Reservoir Pumps    | R1 - 5250 Hp, 75 MGD, 335 TDH       |
|                    | R2 - 5250 Hp, 75 MGD, 335 TDH       |
| Line Pumps         | LR3 - 6000 Hp, 75 MGD, 335 TDH, VFD |
|                    | LR4 - 6000 Hp, 70 MGD, 390 TDH      |
|                    | LR5 - 6000 Hp, 70 MGD, 390 TDH      |
|                    | LR6 - 6000 Hp, 70 MGD, 390 TDH, VFD |
|                    | LR7 - 6000 Hp, 70 MGD, 390 TDH, VFD |
|                    | LR8 - 6000 Hp, 70 MGD, 390 TDH, VFD |
| Electric Feeds     | 2                                   |





Figure VI-29. Newburgh Pump Station

The Newburgh Pumping Station increases the pressure in the 42inch water main that runs along Eight Mile from West Service Center intermediate pressure line. This main is fed by the high pressure district of the Northeast and Springwells Water Treatment Plants. Discharged water from the station flows west through the 42-inch water main and serves Livonia, Northville, Novi, and Farmington Hills.

| Elevation          | 737.00                       |
|--------------------|------------------------------|
| Suction Pressure   | 30 - 60 psi                  |
| Discharge Pressure | 110 - 130 psi                |
| Line Pumps         | L1 - 450 Hp, 8 MGD, 200 TDH  |
|                    | L2 - 450 Hp, 8 MGD, 200 TDH  |
|                    | L3 - 515 Hp, 12 MGD, 200 TDH |
|                    | L4 - 515 Hp, 12 MGD, 200 TDH |
|                    | L5 - 515 Hp, 12 MGD, 200 TDH |
| Electric Feeds     | 2                            |

# Northwest Pump Station



Figure VI-30. Northwest Pump Station

The Northwest Pumping Station consists of a pump house and a reservoir. The station stores water during the off-peak hours and uses the stored water to supplement the water supply during the hours of high demand. The discharged water from the station flows north, through the 42-inch discharge header along Greenfield Road, to the Southeastern Oakland County Water Association Pump Station. A 24-inch branch line, running south along Greenfield Road, supplies water to the Springwells high pressure district. A 54-inch branch line, running west along Eight Mile, supplies water to the West Service Center. The station serves the communities of northwest Detroit.

| Elevation               | 657.00                          |
|-------------------------|---------------------------------|
| <b>Suction Pressure</b> |                                 |
| Discharge Pressure      | 40-55 psi                       |
| Reservoir Capacity      | 10 MG                           |
| Reservoir Pumps         | R1 - 350 Hp, 10.08 MGD, 150 TDH |
|                         | R2 - 350 Hp, 10.08 MGD, 150 TDH |
|                         | R3 - 350 Hp, 10.08 MGD, 150 TDH |
|                         | R4 - 350 Hp, 10.08 MGD, 150 TDH |
|                         | R5 - 350 Hp, 10.08 MGD, 150 TDH |
| Electric Feeds          | 1                               |

### North Service Center



Figure VI-31. North Service Center

The North Service Center receives its water from Lake Huron Water Treatment Plant through the Imlay Station. North Service Center maintains adequate pressure in the 84-inch water main supplying Pontiac and Utica, supplies water to the service are of Northeast Water Treatment Plant and to Eight Mile water main, and stores water during low demand periods to be used to supplement normal water supply during peak periods. North Service Center serves Pontiac, Adams Pumping Station, Utica, Northeast Water Treatment Plant service area, and supplies water to the Eight Mile water main.

| Elevation          | 697.70                                        |
|--------------------|-----------------------------------------------|
| Suction Pressure   | 30 - 50 psi                                   |
| Discharge          | 135 - 150 psi                                 |
| Pressure           |                                               |
| Reservoir Capacity | 2 X 10 MG                                     |
| Reservoir Pumps    | R1 - 250 Hp, 15 MGD, 75 TDH                   |
|                    | R2 - 250 Hp, 15 MGD, 75 TDH                   |
|                    | R3 - 350 Hp, 20 MGD, 76 TDH                   |
|                    | R4 - 350 Hp, 20 MGD, 76 TDH                   |
| Line Pumps         | L2 - 2500/1250 Hp, 23-30 MGD, 240-370 TDH     |
|                    | L3 – 2500/1250 Hp, 19.3-25.5 MGD, 260-400 TDH |
|                    | L4 - 2500/1250 Hp, 23-30 MGD, 240-370 TDH     |
|                    | L5 - 2500/1250 Hp, 19.3-25.5 MGD, 260-400 TDH |
|                    | L6 - 2500/1250 Hp, 19.3-25.5 MGD, 260-400 TDH |
|                    | L7 - 2500 Hp, 30 MGD, 370 TDH, VFD            |
|                    | L8 - 2500 Hp, 30 MGD, 370 TDH, VFD            |
|                    | L9 - 2500 Hp, 30 MGD, 370 TDH, VFD            |
|                    | L10 - 2500 Hp, 30 MGD, 370 TDH, VFD           |
| Electric Feeds     | 2                                             |

# **Orion Pump Station**



Figure VI-32. Orion Pump Station

The Orion Station supplies water at an adequate pressure to Orion's distribution mains. The water comes though the northbound 42-inch water main from Adams Station or North Service Center's 54-inch main, which, in turn, is fed by the Lake Huron Water Treatment Plant through the Imlay Pumping Station. The discharge from the station flows though the 30-inch water main running long Giddings Road and serves the Orion area.

| Elevation          | 946.25                    |
|--------------------|---------------------------|
| Suction Pressure   | 75 - 95 psi               |
| Discharge Pressure | 105 - 130 psi             |
| Line Pumps         | L1 - 75 Hp, 2 MGD, 85 TDH |
|                    | L2 – 75 Hp, 4 MGD, 85 TDH |
|                    | L3 - 75 Hp, 4 MGD, 85 TDH |
|                    | L4 – 75 Hp, 4 MGD, 85 TDH |
| Electric Feeds     | 2                         |

# **Rochester Pump Station**



Figure VI-33. Rochester Pump Station

The Rochester Pump Station consists of a pump house and a transformer yard. The station supplies water at an adequate pressure to the City of Rochester Hills and Shelby Township distribution mains. The station replaced a temporary station at the site. It is fed by the Imlay Station, which receives its water from the Lake Huron Water Treatment Plant. Discharged water will boost pressures in communities currently being served by a 36-inch main running east-west along 24 Mile. The station serves City of Rochester Hills, Shelby Township, City of Rochester, Lennox Township, Macomb Township, and Chesterfield Township.

| Elevation               | 687.00                              |
|-------------------------|-------------------------------------|
| <b>Suction Pressure</b> | 65 - 95 psi                         |
| Discharge               | 75 - 140 psi                        |
| Pressure                |                                     |
| Line Pumps              | L1 - 700 Hp, 14.4 MGD, 205 TDH, VFD |
|                         | L2 - 700 Hp, 14.4 MGD, 205 TDH      |
|                         | L3 - 700 Hp, 14.4 MGD, 205 TDH, VFD |
|                         | L4 - 700 Hp, 14.4 MGD, 205 TDH      |
|                         | L5 - 700 Hp, 14.4 MGD, 205 TDH      |
| Electric Feeds          | 2                                   |

V PRIORITIZATION

#### West Service Center



Figure VI-34. West Service Center

The West Service Center consists of one main pump house, two reservoir pump houses, and two reservoirs. It increases the pressure in the 54-inch water main running along Eight Mile Road, from the high pressure district of the Northeast and Springwells Plants. There are six line pumps in the main pump house. Three line pumps supply high pressure water to the Franklin station and other upstream member partner communities. The three remaining pumps supply the intermediate pressure line, which serves the Newburgh Station, Farmington Station, and other upstream communities. During low demand periods, water is diverted to the reservoirs. During high demand periods, the reservoir water is pumped to the suction header of the line pumps. The intermediate pressure line running along Eight Mile serves Redford Township and Livonia before reaching the

Newburgh Station. High pressure lines running along Inkster Road serve the Farmington Hills and Southeast Oakland County Water Association before reaching the Franklin Station.

| Elevation          | 646.89                          |
|--------------------|---------------------------------|
| Suction Pressure   | 35 - 50 psi                     |
| Discharge Pressure | 110 - 140 psi                   |
| Reservoir Capacity | 2 X 10 MG                       |
| Reservoir Pumps    | R1 - 400 Hp, 24 MGD, 96 TDH     |
|                    | R2 - 400 Hp, 24 MGD, 96 TDH     |
|                    | R3 - 400 Hp, 20 MGD, 85 TDH     |
|                    | R4 - 400 Hp, 20 MGD, 85 TDH     |
| Line Pumps         | L1 - 700 Hp, 30 MGD, 110 TDH    |
|                    | L2 - 700 Hp, 30 MGD, 110 TDH    |
|                    | L3 - 700 Hp, 30 MGD, 110 TDH    |
|                    | L4 - 1250 Hp, 28.8 MGD, 188 TDH |
|                    | L5 - 1250 Hp, 29.5 MGD, 188 TDH |
|                    | L5 - 1250 Hp, 29.5 MGD, 188 TDH |
| Electric Feeds     | 2                               |

IV CIP

# Schoolcraft Pump Station



Figure VI-35. Schoolcraft Pump Station

The Schoolcraft Pump Station consists of one pump house, an electrical building, one reservoir, and one primary unit substation. The station increases the pressure in the 48-inch water main running along Schoolcraft Road. The station is fed by the Springwells Water Treatment Plant and itself feeds the Joy Road Station. The station serves the City of Livonia and interconnects with the Joy Road Station, which services Canton, Westland, and Plymouth.

| Elevation        | 626.83                                |
|------------------|---------------------------------------|
| Suction Pressure | 35 - 55 psi                           |
| Discharge        | 80 - 110 psi                          |
| Pressure         |                                       |
| Reservoir        | 10 MG                                 |
| Capacity         |                                       |
| Reservoir Pumps  | R1 - 1200 Hp, 20 MGD, 238 TDH         |
|                  | R2/L3 - 1200 Hp, 20 MGD, 238 TDH, VFD |
| Line Pumps       | L1 - 1000 Hp, 20 MGD, 170 TDH, VFD    |
|                  | L2 - 1000 Hp, 20 MGD, 170 TDH, VFD    |
| Electric Feeds   | 2                                     |

# West Chicago Pump Station



Figure VI-36. West Chicago Pump Station

The West Chicago Station increases the water pressure in the 26inch water main running along West Chicago Road. The 36-inch water main comes from the high pressure district of the Springwells Water Treatment Plant. The station helps increase the pressure in the intake lines for Schoolcraft and Newburgh Stations. Water from the station serves the member partner communities of southern Livonia, West Service Center intermediate district, and Westland.

| Elevation          | 636.71                        |
|--------------------|-------------------------------|
| Suction Pressure   | 40 - 60 psi                   |
| Discharge Pressure | 70 - 80 psi                   |
| Reservoir Pumps    | R4 - 300 Hp, 7.2 MGD, 185 TDH |
|                    | R5 - 300 Hp, 7.2 MGD, 185 TDH |
|                    | R6 - 300 Hp, 7.2 MGD, 185 TDH |
| Line Pumps         | L1 - 300 Hp, 7.4 MGD, 180 TDH |
|                    | L2 - 300 Hp, 7.4 MGD, 180 TDH |
|                    | L3 - 125 Hp, 4.3 MGD, 180 TDH |
| Electric Feeds     | 2                             |

# Wick Road Pump Station



Figure VI-37. Wick Road Pump Station

The Wick Road Station consists of a pump house, a reservoir, and an electrical building. The station increases pressure in the 48-inch water main running along Wick Road. The station is fed mainly by the Southwest Water Treatment Plant, which is affected by the Springwells Plant's intermediate pressure line. The discharged water from the station flows west through the 48-inch water main along Wick Road. The main is reduced to 42 inches and feeds the Ypsilanti Station. A 24-inch branch from the 48-inch main serves the Van Buren, Sumpter, Huron, and Ash Townships. The station serves the member partner communities of Romulus, Belleville, Carleton, Wayne, and Ypsilanti.

| Elevation          | 626.83                                |
|--------------------|---------------------------------------|
| Suction Pressure   | 40 - 60 psi                           |
| Discharge Pressure | 80 - 135 psi                          |
| Reservoir Capacity | 10 MG                                 |
| Reservoir Pumps    | R1 - 1000 Hp, 12 MGD, 238 TDH         |
|                    | R2 - 1000 Hp, 12 MGD, 238 TDH         |
|                    | R3/L3 - 1000 Hp, 12 MGD, 238 TDH, VFD |
| Line Pumps         | L1 - 1000 Hp, 18 MGD, 252 TDH, VFD    |
|                    | L2 - 1000 Hp, 18 MGD, 252 TDH, VFD    |
| Electric Feeds     | 2                                     |

# Ypsilanti Pump Station



Figure VI-38. Ypsilanti Pump Station

The Ypsilanti Station consists of a pump house and a transformer yard. The station supplies water at adequate pressure to the City of Ypsilanti's distribution mains. It is fed by the Wick Road Station which receives its water from the Southwest Water Treatment Plant's intermediate pressure line. Discharged water from the station flows through the 42-inch water main running along Old Ecorse Road. It serves the City of Ypsilanti as well as Augusta, Pittsfield, and Superior.

| Elevation          | 703.90                             |
|--------------------|------------------------------------|
| Suction Pressure   | 30 - 60 psi                        |
| Discharge Pressure | 110 - 130 psi                      |
| Line Pumps         | L1 - 1000 Hp, 18 MGD, 250 TDH, VFD |
|                    | L2 - 1000 Hp, 18 MGD, 250 TDH, VFD |
|                    | L3 - 1000 Hp, 18 MGD, 250 TDH, VFD |
| Electric Feeds     | 2                                  |

+ PROCESS

# Water Quality

The Water Quality Group is responsible for the majority of the testing and reporting of water quality throughout the Water System. The Water Quality Group manages the state and federal rules and their application to the entire Water System. Functions include the collection, monitoring and reporting requirements associated with these rules. Total coliform rule (TCR), the consumer confidence rule (CCR) and the lead and copper (LCR) are exclusively managed by the GLWA water quality group for the entire System except in those communities which choose not to participate. The Safe Drinking Water Act (SDWA) rules that apply exclusively to the distribution system, other than TCR and LCR, are the exclusive responsibility of each local water system.

Currently the GLWA Water Quality Group performs a majority of its work for the overall benefit of the GLWA System. These functions include water quality testing, member partner response, disinfection services and the overall program management related to the Water System water quality compliance.

#### **General Purpose** 1.4.1.

Refer to the General Purpose description on page II-6.

#### 1.5. Metering

The System Analytics and Meter Operations Group is responsible for maintenance and operation of numerous remote assets used in the metering of water, as well as the communication network used to transmit data from the water metering locations to the head end.

The System Analytics and Meter Operations Group maintains assets with the responsibility to meter wholesale water usage at

290 metering sites. Each of the 290 water metering sites contain equipment that is located in a control cabinet, as well as assets that are located in a water meter vault. The assets that are housed in the control cabinet include Remote Terminal Units, radios, batteries, battery chargers and flow transmitters. The assets that are housed in the water meter vault include differential pressure transmitters, venturi tubes, magnetic meters, pressure transmitters, mechanical flow meters, bypass valves, inlet/outlet gate valves, butterfly valves, and sump pumps.

In addition to metering equipment, the System Analytics and Meter Operations Group maintains a 900MHz telemetry network and a Wholesale Automated Meter Reading (WAMR) system. The 900 MHz telemetry network is composed of 445 repeater sites. Each repeater location consists of radios and antennas. The WAMR system collects flow and pressure information from GLWA wholesale water meter sites every five minutes. The portal provides a customizable, web-based interface that displays meter and member partner data in both graphical and tabular formats in increments of five minute, hourly and daily intervals. Member partner and site usage can also be downloaded for off-line examination. Billed Consumption with adjustments can be reviewed for member partner usage analysis.

#### 1.5.1. **General Purpose**

Refer to the General Purpose description on page II-6.

#### **General Purpose** 1.6.

Refer to the General Purpose description on page II-6.

#### **Programs** 1.7.

Refer to the Programs description on page II-6.

OVERVIEW

# PROCESS

III FINANCE

IV CIP SUMMARY

V PRIORITIZATION

VI PROJECTS BY CATEGORY VII TEN-YEAR OUTLOOK VIII PROJECT DESCRIPTIONS

IX GLOSSARY

# SECTION 2 WASTEWATER

All financial figures are in thousands of dollars (\$1,000's). The Project Status column shows which projects are Active (A), Future Planned (FP), or Pending Closeout (PC). Projects that have been Reclassified to a different number, Closed, or Cancelled are not shown in this list; a list of Closed projects can be found in Chapter IV. For projects in the "Centralized Services" category (CIP number begins with 3), only portions of projects funded by the wastewater budget are included in this section. Projects new to the CIP this year are denoted by bolded CIP number and title. Following these tables is a chart from the Integrated Master Schedule showing the planned sequencing of projects. This was done by updating our scheduler software (Primavera P6) with the updated information from the CIP database.

Table VI-8. Wastewater/Sewer Projects: Active, Ranked by 2021-2025 CIP Total

|        |                                                  | SII           | -          | ral<br>[9]                                 |         |         | Pro     | jected Ex | penditure | S       |                  | el el                                   | æ            | S/.           |
|--------|--------------------------------------------------|---------------|------------|--------------------------------------------|---------|---------|---------|-----------|-----------|---------|------------------|-----------------------------------------|--------------|---------------|
| CIP#   | Title                                            | Project Stati | Year Added | Lifetime Actı<br>Thru FY 201<br>(unaudited | FY 2020 | FY 2021 | FY 2022 | FY 2023   | FY 2024   | FY 2025 | FY 2026 & Beyond | 2021-2025 C<br>Total                    | Project Tota | Percent of W/ |
| 260200 | Sewer and Interceptor Rehabilitation Program     | Α             | 2013       | 18,637                                     | 19,029  | 12,976  | 36,047  | 24,872    | 15,495    | 14,347  | 13,240           | 103,737                                 | 154,643      | 14.0%         |
|        | Freud & Conner Creek Pump Station                |               |            |                                            |         |         |         |           |           |         |                  |                                         |              |               |
| 232002 | Improvements                                     | Α             | 2016       | 5,631                                      | 7,364   | 6,445   | 57      | 9,898     | 23,830    | 30,803  | 138,071          | 71,033                                  | 222,099      | 9.6%          |
|        | WRRF PS #2 Bar Racks Replacements and Grit       |               |            |                                            |         |         |         |           |           |         |                  |                                         |              |               |
| 211007 | Collection System Improvements                   | Α             | 2016       | 1                                          | 256     | 3,098   | 7,546   | 2,120     | 20,899    | 34,034  | 8,642            | 67,697                                  | 76,596       | 9.2%          |
|        | Detroit River Interceptor (DRI) Evaluation and   |               |            |                                            |         |         |         |           |           |         |                  |                                         |              |               |
| 222002 | Rehabilitation                                   | Α             | 2016       | 10,592                                     | 16,199  | 23,634  | 9,786   | 1,465     | 10,014    | 9,986   | 0                | 54,885                                  | 81,676       | 7.4%          |
| 260600 | CSO Facilities Improvement Program               | Α             | 2017       | 6,742                                      | 7,555   | 7,492   | 10,289  | 10,576    | 4,759     | 20,280  | 85,250           | 53,396                                  | 152,943      | 7.2%          |
| 260500 | CSO Outfall Rehabilitation                       | Α             | 2017       | 3,331                                      | 4,802   | 11,706  | 9,156   | 11,995    | 10,976    | 8,243   | 4,197            | 52,076                                  | 64,406       | 7.0%          |
|        | Sewer System Infrastructure and Pumping          |               |            |                                            |         |         |         |           |           |         |                  |                                         |              |               |
| 222004 | Stations Improvements                            | Α             | 2017       | 4                                          | 1,459   | 2,701   | 5,433   | 16,434    | 9,864     | 3,279   | 1,952            | 37,711                                  | 41,126       | 5.1%          |
| 211006 | WRRF PS No. 1 Improvements                       | Α             | 2016       | 6                                          | 929     | 645     | 551     | 8,532     | 12,772    | 3,341   | 0                | 25,841                                  | 26,776       | 3.5%          |
|        | Assessment and Rehabilitation of WRRF yard       |               |            |                                            |         |         |         |           |           |         |                  |                                         | í            |               |
| 216006 | piping and underground utilities                 | Α             | 2017       | 3                                          | 270     | 4,291   | 4,754   | 4,754     | 4,767     | 5,400   | 273              | 23,966                                  | 24,512       | 3.2%          |
|        | WRRF Rehabilitation of the Ash Handling          |               |            |                                            |         | ,       | , -     | , -       | , -       | -,      |                  | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | ,-           |               |
| 213008 | Systems                                          | Α             | 2017       | 0                                          | 166     | 1,338   | 636     | 11,061    | 5,342     | 0       | 0                | 18,377                                  | 18,543       | 2.5%          |
|        | WRRF Rehabilitation of Ferric Chloride Feed      |               |            |                                            |         | ·       |         | , i       | ·         |         |                  |                                         | ,            |               |
| 211008 | System in PS-1 and Complex B Sludge Lines        | Α             | 2017       | 178                                        | 1,239   | 5,522   | 3,886   | 0         | 0         | 0       | 0                | 9,408                                   | 10,825       | 1.3%          |
|        | Roofing Systems Replacement at GLWA WRRF,        |               |            |                                            |         |         |         |           |           |         |                  |                                         |              |               |
|        | CSO Retention Treatment Basins (RTB) and         |               |            |                                            |         |         |         |           |           |         |                  |                                         |              |               |
| 331002 | Screening Disinfection Facilities (SDF)          | Α             | 2017       | 802                                        | 321     | 91      | 1,745   | 1,724     | 1,708     | 1,702   | 1,652            | 6,970                                   | 9,745        | 0.9%          |
|        | Fairview Pumping Station - Replace Four Sanitary |               |            |                                            |         |         |         |           |           |         |                  |                                         |              |               |
| 232001 | Pumps                                            | Α             | 2011       | 3,404                                      | 27,552  | 5,336   | 984     | 0         | 0         | 0       | 0                | 6,320                                   | 37,276       | 0.9%          |
|        | WRRF Rehabilitation of Primary Clarifiers        |               |            |                                            |         |         |         |           |           |         |                  |                                         |              |               |
|        | Rectangular Tanks, Drain Lines,                  |               |            |                                            |         |         |         |           |           |         |                  |                                         |              |               |
| 211001 | Electrical/Mechanical Building and Pipe Gallery  | Α             | 1999       | 45,069                                     | 6,225   | 3,775   | 0       | 0         | 0         | 0       | 0                | 3,775                                   | 55,069       | 0.5%          |
|        | LM Facilities Assessment and                     |               |            |                                            |         |         |         |           |           |         |                  |                                         |              |               |
| 216009 | Rehabilitation/Replacement                       | Α             | 2019       | 0                                          | 227     | 253     | 1,318   | 970       | 0         | 0       | 0                | 2,541                                   | 2,768        | 0.3%          |



I OVERVIEW

# PROCESS

III FINANCE

IV CIP SUMMARY

V PRIORITIZATION VI PR

/I PROJECTS
Y CATEGORY

VII TEN-YEAR OUTLOOK VIII PROJECT DESCRIPTIONS

IX GLOSSARY

|        |                                                                                              | 10             |            | <b>=</b> -                                    |         |         | <u> </u> |         | S       |         |                  |                       |               |                      |
|--------|----------------------------------------------------------------------------------------------|----------------|------------|-----------------------------------------------|---------|---------|----------|---------|---------|---------|------------------|-----------------------|---------------|----------------------|
| CIP#   | Title                                                                                        | Project Status | Year Added | Lifetime Actua<br>Thru FY 2019<br>(unaudited) | FY 2020 | FY 2021 | FY 2022  | FY 2023 | FY 2024 | FY 2025 | FY 2026 & Beyond | 2021-2025 CD<br>Total | Project Total | Percent of W/<br>CIP |
| 24222  | WRRF Modification to Incinerator Sludge Feed                                                 |                | 2046       | 0.050                                         | 0.004   | 0.050   | 0        |         | 0       | 0       | 0                | 2.250                 | 10016         | 0.007                |
| 213007 | Systems at Complex -II                                                                       | A              | 2016       | 9,352                                         | 8,336   | 2,258   | 0        | 0       | 0       | 0       | 0                | 2,258                 |               |                      |
| 216007 | DTE Primary Electric 3rd Feed Supply to WRRF                                                 | A              | 2017       | 738                                           | 3,062   | 1,296   | 727      | 0       | 0       | 0       | 0                | 2,023                 | 5,823         | 0.3%                 |
| 212004 | WRRF Chlorination and Dechlorination Process<br>Equipment Improvements                       | A              | 2010       | 190                                           | 3,726   | 1,850   | 0        | 0       | 0       | 0       | 0                | 1,850                 | 5,766         | 0.3%                 |
| 216004 | Rehabilitation of Various Sampling Sites and PS#2 Ferric Chloride System at WRRF             | A              | 2010       | 815                                           | 3,493   | 1,300   | 121      | 0       | 0       | 0       | 0                | 1,421                 | 5,729         | 0.2%                 |
| 214001 | WRRF Relocation of Industrial Waste Control<br>Division and Analytical Laboratory Operations | A              | 2014       | 2,301                                         | 10,369  | 1,331   | 0        | 0       | 0       | 0       | 0                | 1,331                 | 14,001        | 0.2%                 |
| 341002 | Security Infrastructure Improvements for<br>Wastewater Facilities                            | A              | 2019       | 0                                             | 1,579   | 1,051   | 0        | 0       | 0       | 0       | 0                | 1,051                 | 2,630         | 0.1%                 |
| 211002 | WRRF PS No. 2 Pumping Improvements - Phase 1                                                 | Α              | 2003       | 1,912                                         | 1,860   | 0       | 0        | 0       | 0       | 0       | 0                | 0                     | 3,772         | 0.0%                 |
| 211004 | WRRF PS #1 Rack & Grit and MPI Sampling<br>Station 1 Improvements                            | A              | 2008       | 26,502                                        | 1,771   | 0       | 0        | 0       | 0       | 0       | 0                | 0                     | 28,273        | 0.0%                 |
| 212003 | WRRF Aeration System Improvements                                                            | A              | 2008       | 16,356                                        | 136     | 0       | 0        | 0       | 0       | 0       | 0                | 0                     | 16,492        | 0.0%                 |
| 212006 | WRRF Rouge River Outfall (RRO) Disinfection (Alternative)                                    | A              | 2014       | 41,692                                        | 2,748   | 0       | 0        | 0       | 0       | 0       | 0                | 0                     | 44,440        | 0.0%                 |
|        | Active Wastewater Projects Total                                                             |                |            | 194,258                                       | 130,673 | 98,389  | 93.036   | 104,401 | 120,426 | 131.415 | 253.277          | 547,667               | 1,125,875     | 74.1%                |

Table VI-9. Wastewater/Sewer CIP Projects: Pending Closeout, Ranked by Total Cost

|      |                                           | tus         | þ         | d FY                                         |         |         | Pro     | jected Ex | penditures |         |                     | CIP                | tal        | J.                   |
|------|-------------------------------------------|-------------|-----------|----------------------------------------------|---------|---------|---------|-----------|------------|---------|---------------------|--------------------|------------|----------------------|
| CIP# | Title                                     | Project Sta | Year Adde | Lifetime<br>Actual Thru<br>2019<br>(unaudite | FY 2020 | FY 2021 | FY 2022 | FY 2023   | FY 2024    | FY 2025 | FY 2026 &<br>Beyond | 2021-2025<br>Total | Project To | Percent c<br>W/S CIP |
|      | -none-                                    |             |           | -                                            | -       | -       | -       | -         | -          | -       | -                   | 0                  | 0          |                      |
|      | Pending Closeout Wastewater Projects Tota | l           |           | 0                                            | 0       | 0       | 0       | 0         | 0          | 0       | 0                   | 0                  | 0          | 0.0%                 |

Table VI-10. Wastewater/Sewer Projects: Future Planned, Ranked by Prioritization Score

|        |                                         | Sins         | p         | Projected Expenditures                          |         |         |         |         |         |         |                  |                       |             | <u>_</u>  | ou<br>e                    |
|--------|-----------------------------------------|--------------|-----------|-------------------------------------------------|---------|---------|---------|---------|---------|---------|------------------|-----------------------|-------------|-----------|----------------------------|
| # dID  | Title                                   | Project Stat | Year Adde | Lifetime<br>Actual Thr<br>FY 2019<br>(unaudited | FY 2020 | FY 2021 | FY 2022 | FY 2023 | FY 2024 | FY 2025 | FY 2026 & Beyond | 2021-202<br>CIP Total | Project Tot | Percent o | Prioritizati<br>(RC) Score |
| 211005 | WRRF PS No. 2 Improvements Phase II     | FP           | 2014      | 1                                               | 0       | 0       | 0       | 471     | 2,245   | 949     | 30,384           | 3,665                 | 34,050      | 0.5%      | 72.8                       |
| 277001 | Baby Creek Outfall Improvements Project | FP           | 2019      | 0                                               | 79      | 1,251   | 907     | 0       | 0       | 0       | 0                | 2,158                 | 2,237       | 0.3%      | 72.8                       |



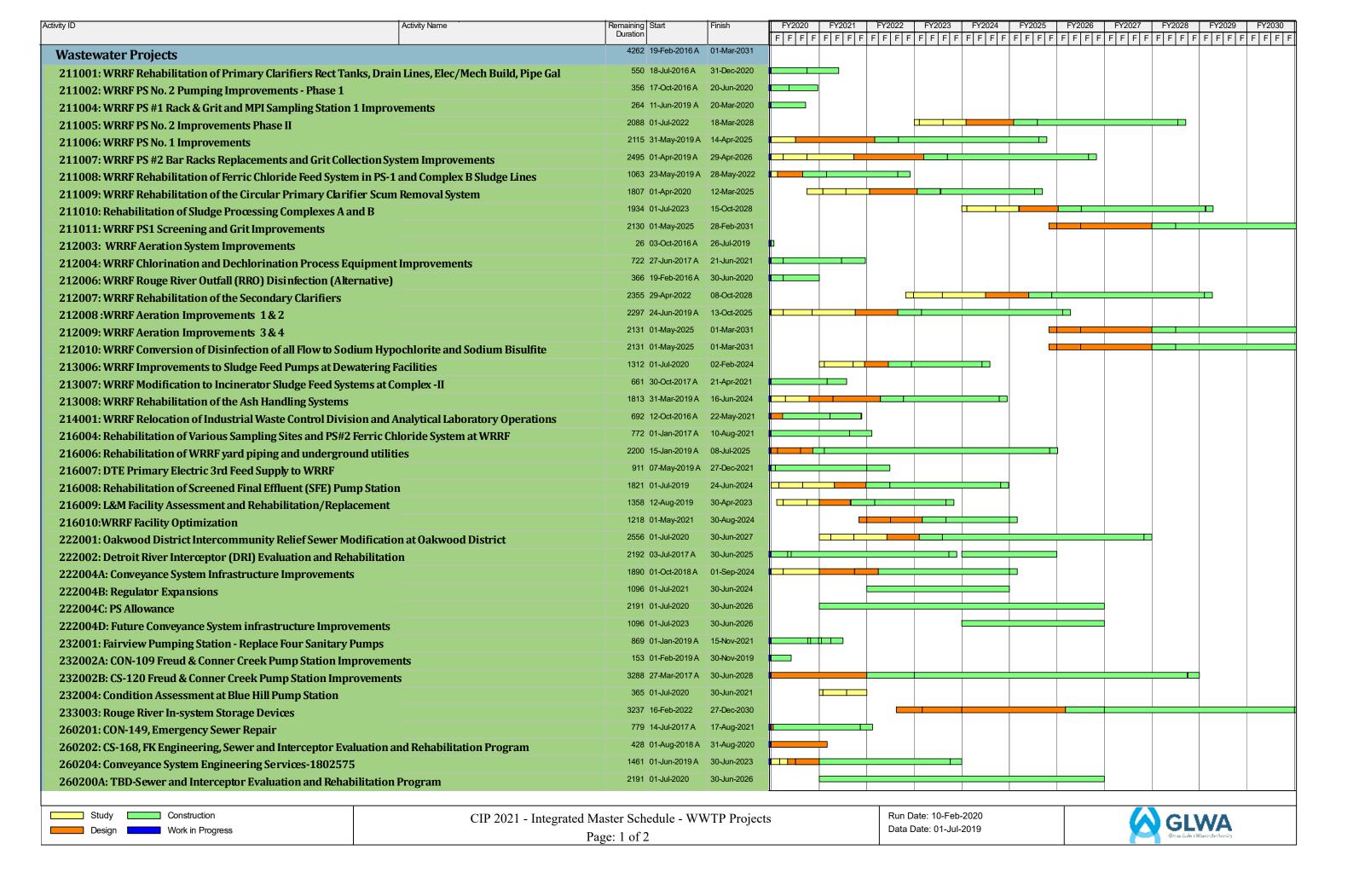
OVERVIEW

II CIP DEVELOPMENT + PROCESS

III FINANCE

IV CIP SUMMARY

V PRIORITIZATION


VI PROJECTS BY CATEGORY VII TEN-YEAR OUTLOOK VIII PROJECT DESCRIPTIONS

IX GLOSSARY

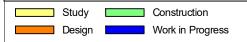

| CIP#   | Title                                                                                      | Project Status | Year Added | Lifetime<br>Actual Thru<br>FY 2019<br>(unaudited) | FY 2020 | FY 2021 | FY 2022 | ijected Ex<br>207<br>Z<br>Z<br>A | FY 2024<br>2024<br>Penditure | FY 2025 | FY 2026 &<br>Beyond | 2021-2025<br>CIP Total | Project Total | Percent of W/S CIP | Prioritization<br>(RC) Score |
|--------|--------------------------------------------------------------------------------------------|----------------|------------|---------------------------------------------------|---------|---------|---------|----------------------------------|------------------------------|---------|---------------------|------------------------|---------------|--------------------|------------------------------|
| 040006 | WRRF Improvements to Sludge Feed Pumps at                                                  |                | 2016       | _                                                 |         | 4.5.4   | 00=     | 0.054                            |                              |         |                     |                        | 4             | 0.604              | 60.0                         |
| 213006 | Dewatering Facilities                                                                      | FP             | 2016       | 5                                                 | 0       | 174     | 385     | 3,371                            | 716                          | 0       | 0                   | 4,646                  | 4,651         | 0.6%               |                              |
| 212008 | WRRF Aeration Improvements 1 and 2                                                         | FP             | 2017       | 0                                                 | 183     | 4,612   | 7,977   | 7,619                            | 40,638                       | 15,336  | 5,149               | 76,182                 | 81,514        | 10.3%              |                              |
| 212009 | WRRF Aeration Improvements 3 and 4                                                         | FP             | 2019       | 0                                                 | 0       | 0       | 0       | 0                                | 0                            | 14      | 73,749              | 14                     | 73,763        | 0.0%               | 67.8                         |
| 211010 | Rehabilitation of Sludge Processing Complexes A and B                                      | FP             | 2019       | 0                                                 | 0       | 0       | 0       | 0                                | 178                          | 748     | 13,113              | 926                    | 14,039        | 0.1%               | 65.0                         |
| 212010 | WRRF Conversion of Disinfection of all Flow to<br>Sodium Hypochlorite and Sodium Bisulfite | FP             | 2019       | 0                                                 | 0       | 0       | 0       | 0                                | 0                            | 14      | 5,972               | 14                     | 5,986         | 0.0%               | 65.0                         |
| 270001 | Pilot CSO Netting Facility                                                                 | FP             | 2019       | 0                                                 | 0       | 20      | 86      | 1,604                            | 318                          | 4,507   | 1,234               | 6,535                  | 7,769         | 0.9%               | 65.0                         |
| 211011 | WRRF PS1 Screening and Grit Improvements                                                   | FP             | 2019       | 0                                                 | 0       | 0       | 0       | 0                                | 0                            | 14      | 100,733             | 14                     | 100,747       | 0.0%               | 64.0                         |
| 216010 | WRRF Facility Optimization                                                                 | FP             | 2019       | 0                                                 | 0       | 14      | 657     | 987                              | 7,999                        | 681     | 0                   | 10,338                 | 10,338        | 1.4%               | 63.6                         |
| 270002 | Meldrum Sewer Diversion and VR-15<br>Improvements                                          | FP             | 2019       | 0                                                 | 0       | 0       | 13      | 86                               | 586                          | 162     | 5,232               | 847                    | 6,079         | 0.1%               | 62.4                         |
| 211009 | WRRF Rehabilitation of the Circular Primary<br>Clarifier Scum Removal System               | FP             | 2017       | 0                                                 | 21      | 313     | 1,254   | 802                              | 8,715                        | 2,144   | 0                   | 13,228                 | 13,249        | 1.8%               | 61.2                         |
| 233003 | Rouge River In-system Storage Devices                                                      | FP             | 2019       | 0                                                 | 0       | 0       | 32      | 86                               | 3,374                        | 1,984   | 41,321              | 5,476                  | 46,797        | 0.7%               | 60.8                         |
| 270003 | Long Term CSO Control Plan                                                                 | FP             | 2019       | 0                                                 | 68      | 2,796   | 2,220   | 710                              | 0                            | 0       | 0                   | 5,726                  | 5,794         | 0.8%               | 59.6                         |
| 216008 | Rehabilitation of Screened Final Effluent (SFE)<br>Pump Station                            | FP             | 2018       | 0                                                 | 590     | 1,362   | 1,507   | 15,571                           | 5,924                        | 0       | 0                   | 24,364                 | 24,954        | 3.3%               | 55.8                         |
| 222001 | Oakwood District Intercommunity Relief Sewer<br>Modification at Oakwood District           | FP             | 2014       | 0                                                 | 0       | 975     | 3,128   | 3,371                            | 11,234                       | 13,439  | 21,365              | 32,147                 | 53,512        | 4.3%               | 53.6                         |
| 212007 | WRRF Rehabilitation of the Secondary Clarifiers                                            |                | 2014       | 0                                                 | 0       | 0       | 3,126   | 427                              | 879                          | 532     | 28,288              | 1,853                  | 30,141        | 0.3%               |                              |
| 232004 | Condition Assessment at Blue Hill Pump Station                                             |                | 2017       | 0                                                 | 0       | 286     | 15      | 0                                | 0                            | 0       | 20,200              | 286                    | 286           | 0.5%               |                              |
| 232004 | Future Planned Wastewater Projects Total                                                   |                | 2019       | 6                                                 | 941     | 11,803  | 18,181  | -                                | 82,806                       | -       | -                   | 188,419                | 515,906       |                    |                              |

Table VI-11. Wastewater/Sewer CIP Projects: Subtotals

|                                            | ual<br>19<br>1)                          |         |         | Pro     | jected Ex | penditur | es      |                  | CIIP                 | JE.         | 1/5          |
|--------------------------------------------|------------------------------------------|---------|---------|---------|-----------|----------|---------|------------------|----------------------|-------------|--------------|
| Subtotals                                  | Lifetime Act<br>Thru FY 20<br>(unaudited | FY 2020 | FY 2021 | FY 2022 | FY 2023   | FY 2024  | FY 2025 | FY 2026 & Beyond | 2021-2025 (<br>Total | Project Tot | Percent of W |
| Active Wastewater Projects Total           | 194,258                                  | 130,673 | 98,389  | 93,036  | 104,401   | 120,426  | 131,415 | 253,277          | 547,667              | 1,125,875   | 74.1%        |
| Pending Closeout Wastewater Projects Total | -                                        | -       | -       | -       | -         | -        | -       | -                | -                    | -           | -            |
| Future Planned Wastewater Projects Total   | 6                                        | 941     | 11,803  | 18,181  | 35,105    | 82,806   | 40,524  | 326,540          | 188,419              | 515,906     | 25.5%        |
| Total Wastewater Projects                  | 194,264                                  | 131,614 | 110,192 | 111,217 | 139,506   | 203,232  | 171,939 | 579,817          | 736,086              | 1,641,781   | 99.5%        |









# 2.1. Water Resources Recovery Facility

The Water Resources Recovery Facility (WRRF, formerly referred to as the Wastewater Treatment Plant or WWTP) is the largest single-site wastewater treatment facility in the United States. Of the more than \$22.5 million spent to ready the plant for its February 1940 startup, \$10 million was spent on plant construction with the balance going to complete the network of huge interceptor sewers through which a combined stream of storm and sanitary wastewater flows to the plant from member partner communities throughout metro Detroit.

The treatment plant was originally designed to provide primary treatment (screening, grit removal, primary sedimentation and chlorination) for the wastewater generated by 2.4 million people and, with modifications, as many as 4 million people. The plant's service area in 1940 included Detroit and 11 nearby suburban communities. Secondary treatment (biological treatment and secondary clarification for removal of biodegradable solids, resulting in an even cleaner effluent) was introduced in the 1960s. GLWA'S WRRF continues to be the recipient of continual upgrades in order to ensure it is capable of staying abreast of ever more stringent regulatory standards.

Currently, the WRRF services the needs of 35 percent of the state's population contained within Detroit and 76 other communities in a service area of more than 946 square miles. In 1999, the Michigan section of the American Society of Civil Engineers named the WRRF one of the top 10 engineering projects of the 20th century.

The WRRF treats, on average, 650 MGD. Currently, the peak rated capacity is 1,700 MGD for primary treatment and 930 MGD for secondary treatment. The WRRF has been in service since 1940, at which time it removed approximately 50-70 percent of the pollutant loads. It was upgraded to full secondary treatment in the 1970s. After the upgrade to secondary treatment, the WRRF

removes in excess of 85 percent of the pollutant loads to meet federal and state requirements.

Currently, the WRRF serves approximately 3 million residents in southeast Michigan. The WRRF receives wastewater flow from three main interceptors: the Detroit River Interceptor (DRI), the Oakwood Interceptor (OWI), and the North Interceptor East Arm (NIEA). Approximately 36 percent of the flow comes from the DRI, 35 percent from the OWI, and the remaining 29 percent from the NIEA. After the flow reaches the WRRF via the three interceptors, it is pumped to the primary and secondary treatment processes at Pump Station No. 1 (PS-1) and Pump Station No. 2 (PS-2). Each pump station has eight pumps with a combined total pumping capacity in excess of 2 billion gallons per day (BGD).

A diagram of the WRRF layout is shown on the following page in Figure VI-39.

### 2.1.1. Primary Treatment

The primary treatment area of the WRRF consists of the following major units:

- Raw wastewater pumping to Pump Station No. 1 (PS-1) and Pump Station No. 2 (PS-2), grit and screenings removal, and chemical addition.
- 12 Rectangular Primary Clarifiers
- 6 Circular Clarifiers
- 7 Rectangular Clarifier Scum Buildings
- 6 Circular Clarifier Scum Buildings
- Rectangular Clarifier Pipe Gallery (including 12 Sludge Pumps)
- 6 Rectangular Clarifier Electrical/Mechanical Buildings
- 3 Circular Clarifier Sludge Pumping Stations
- 1 Scum Concentrator Building
- 1 Thin Sludge Pumping Station
- Miscellaneous Hydraulic Structures and Gates

**V** PRIORITIZATION

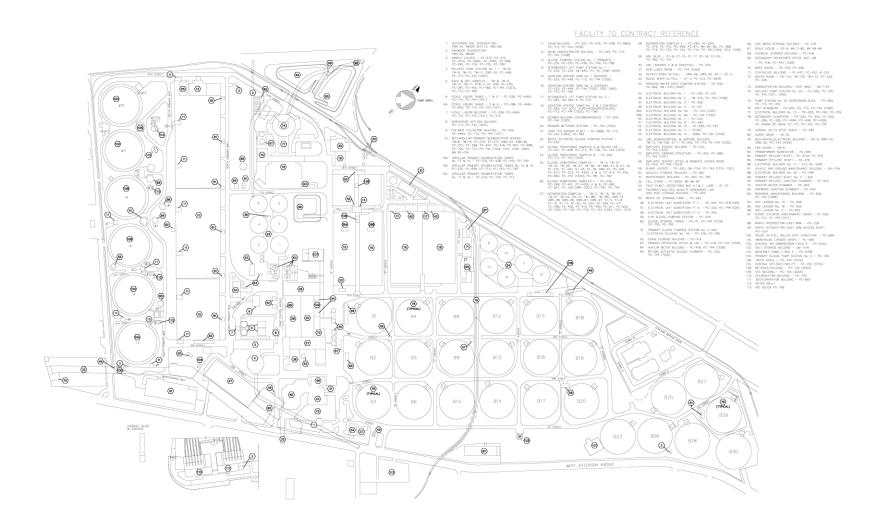



Figure VI-39. Water Resource Recovery Facility Layout

Wastewater from PS-1 and PS-2 flows by gravity to the rectangular and circular primary clarifiers. Under normal dry weather flow conditions, the rectangular clarifiers typically receive flow from PS-1, while the circular clarifiers typically receive flow from PS-2, and all the primary effluent receives secondary treatment. Under wet weather conditions, a portion of the flow from PS-1 may need to be directed to the circular clarifiers to meet the permit primary flow requirement of 1,700 MGD. The permit requires that flow up to 930 MGD be directed to secondary treatment and that flow above 930 MGD receive chlorination and be discharged through the Detroit River Outfall.

### 2.1.2. Secondary Treatment & Disinfection

The secondary treatment area of the WRRF consists of the following major units (continued after next page):

- ILP Station No. 1 with ILP Nos. 1 and 2
- ILP Station No. 2 with ILP Nos. 3, 4, and 7
- Four Covered Oxygen Tanks (Aeration Deck Nos. 1, 2, 3 and 4)
- One Oxygen Gas Delivery Pipeline
- One Cryogenic Oxygen Production Plant
- Twenty-five Circular Final Clarifiers
- Chlorination/Dechlorination/Outfalls
- Intermediate pumping (ILP Station Nos. 1 and 2).
- Secondary treatment using high purity oxygen activated sludge tanks and 25 secondary clarifiers.
- Disinfection of the final effluent using chlorination and dechlorination.

The Intermediate Lift Pumps (ILPs) lift primary effluent from the Primary Effluent to Activated Sludge (PEAS) Tunnel to the aeration decks. Primary effluent is mixed with return activated sludge at the head of each aeration basin. Aeration Basins Nos. 1 through 4 employ a high purity oxygen activated sludge process.

All required oxygen for the aeration system is supplied by Praxair through a dedicated pipeline. The Praxair pipeline ends at a metering station located where the old T-180 Cryogenic Plant was located (this plant was demolished as part of DWP-1013). From the metering station, an oxygen piping system ties into each aeration deck and the liquid oxygen backup system.

Four covered aeration decks use high purity oxygen for biological treatment. Aeration Deck Nos. 1 and 2 each have 10 bays, while Aeration Deck Nos. 3 and 4 have eight bays each. The volume of each aeration deck is approximately 17.8 million gallons. Oxygen is fed to the headspace at the first bay of each deck. High efficiency aerators dissolve oxygen into the wastewater and keep the mixed liquor in suspension. Primary effluent and return activated sludge (RAS) enter at the first bay of each aeration deck. All decks are equipped with mixers, a purge blower, oxygen feed and vent valves, an oxygen flow meter, and Lower Explosive Limit (LEL) and dissolved oxygen monitoring equipment.

Each aeration deck has a rated capacity of 310 MGD (+50 MGD RAS). The plant typically maintains three decks in service at all times to be able to meet the required wet weather flow of 930 MGD through secondary treatment. The fourth deck is always offline and acts as a backup. Aeration Deck No. 1 was converted to a pure oxygen system, and Aeration Deck Nos. 2, 3, and 4 were rehabilitated in 2004 through 2006 under DWP-1005 "Aeration Deck Conversion and Rehabilitation."

The mixed liquor flows by gravity from the aeration decks and is distributed to the secondary clarifiers for solids/water separation. Variable speed vertical wet pit pumps return the activated sludge from the clarifiers to the aeration decks. Sludge is wasted on a continuous basis from the return activated sludge to Complex B gravity thickeners.

The secondary effluent is chlorinated and dechlorinated before discharge to the river through the Detroit River Outfall (DRO).

As indicated above, the secondary treatment capacity is 930 MGD during wet weather. The 930 MGD capacity is based on the following assumptions:

- 3 out of 5 ILPs each at 310 MGD
- 3 out of 4 aeration decks each at 310 MGD
- 23 of 25 clarifiers each at 40.4 MGD

The conversion of Aeration Basin No. 1 to high purity oxygen in 2004 increased its capacity from 150 MGD to a maximum of 310 MGD, providing the plant with any one basin as backup capacity. Additionally, the replacement of ILP Nos. 1 and 2 and modification to their flow metering installation under DWP-2004, increased their maximum pumping capacity from 260 MGD to 365 MGD during the year 2004. These improvements have, therefore, provided GLWA adequate redundancy to allow the maintenance staff to schedule shutdowns of aeration basins or ILPs to conduct preventive maintenance throughout the year regardless of weather conditions.

#### Residuals Management 2.1.3.

Solids generated in primary and secondary treatment are gravitythickened in separate facilities for primary sludge and thickened waste activated sludge for drying and disposal. A portion of the thickened sludge is pumped to the new Biosolids Drying Facility (BDF). The thickened solids are dewatered using both high solids centrifuges and belt filter presses (BFPs). Portions of the dewatered solids are incinerated. The remainder of the dewatered solids are offloaded after lime addition to trucks for either land application or landfill disposal.

#### Industrial Waste Control 214

The Authority's Industrial Waste Control (IWC) Division, located at 303 S. Livernois, is responsible for implementing and enforcing city and federal regulations pertaining to the pretreatment of industrial wastewater.

Industrial Waste Control charges are assessed to all commercial and industrial end users that send wastewater to the GLWA wastewater treatment plant. The IWC charges are to offset the costs incurred in administering regulatory activities under the Sewer Use Ordinance/Industrial Waste Control Ordinance as required in the National Pollutant Discharge Elimination System (NPDES) Permit Program and the Clean Water Act (CWA). There is a delegation Agreement with each community to collect the industrial waste control charges from the end-users even though most communities are contracting agency member partner s to the wholesale sewer contract member partner.

In addition to the IWC Charges, a commercial or industrial end user may also have to pay pollutant surcharges if they discharge high-strength wastewater into the System that has compatible pollutant levels higher than is allowed for domestic sources. The IWC Group evaluates users and does testing to identify those users that have excess pollutants. The charges are used to offset the higher chemical and treatment costs for these excess pollutants in the wastewater.

#### 2.1.5. **CSO RTB & SDF**

The Authority provides treatment at Combined Sewer Overflow (CSO) Retention Treatment Basins (RTB) and Screening and Disinfection Facilities (SDF) on many of its largest outfalls to provide for removal of floatable material and disinfection of wastewater prior to discharge. The CSO basins are also designed with storage capacity to contain a volume of wastewater from each storm event, including the first flush of the storm. When the storm event subsides, the captured flows are pumped back through the system for treatment at the WRRF.

GLWA operates eight of the 18 CSO control facilities tributary to GLWA's Regional Sewer System in Wayne, Oakland and Macomb Counties as prescribed in a lease agreement. The facilities are an outgrowth of the Long-Term CSO Control Plan, started in 1993 to address CSO discharges from 78 outfalls along the Detroit and Rouge Rivers. Of the eight facilities, five are CSO RTBs and three are SDFs. The location of CSO RTBs and SDFs assets can be found on Figure VI-51 on page VI-52. The Belle Isle CSO RTB is operated as prescribed in a shared services agreement.

#### Combined Sewer Overflow Retention Treatment Basins

CSO control is needed because the Sewer System can become overloaded during heavy rain events. In older, large metropolitan areas like Detroit, combined sewers are used to transport both wastewater and storm water in the same pipe. During rainstorms, these sewers can receive many times the volume of flow that is normally transported on a dry day. CSO control facilities adequately treat these excess flows during wet weather in accordance with the GLWA EGLE NPDES permit. Conversely, newer communities have two separate sewer systems: one to handle wastewater flow and the other for storm flow.

A CSO retention treatment basin (RTB) is a storage tank that captures flow equal to its volume during a wet-weather event. Flow to an RTB in excess of its volume is screened and disinfected prior to discharge out of an RTB outfall. Flows are injected with Sodium Hypochlorite disinfectant to kill bacteria before discharging to receiving waters (Detroit and Rouge Rivers). Materials removed by the screens are sent to the WRRF or hauled to a landfill for proper disposal. The stored flows are sent to the WRRF after the storm has subsided and capacity is available in the sewer system. During smaller wet weather events, the flows are small enough to be completely captured and stored in the RTB.

Some RTBs have a first-flush compartment used to store flow with the highest level of pollutants from the first part of the storm. These pollutants include organic material, oil, sediment, salt and lawn chemicals that are picked up by the storm water as it runs off roads and lawns. Flows from this compartment are always stored and sent to the WRRF when the RTB is emptied.

GLWA adopted a four-part strategy to address CSO:

- Source reduction reduce the amount of storm flow that enters the wastewater system.
- In-system storage maximize the use of existing storage space in the sewer system during storms.
- Wastewater treatment plant expansion expand capacity of primary treatment from 1.5 to 1.7 billion gallons per day to treat more flow during storms.
- End-of-pipe treatment construct facilities to store and treat the combined sewage, preventing it from entering area waterways unless treated and disinfected.

In spite of this progress to eliminate untreated combined sewer overflows, GLWA is preparing for the next phase in combined sewer overflow treatment. This next phase will endeavor to reduce, minimize, and/or eliminate untreated CSO overflows over the next long term CSO period. Strategies for the long-term plan will focus on and further develop elements identified during the 2019 GLWA Wastewater Master Plan project.

A summary of the overall flow and treatment capacity of the GLWA CSO RTB Facilities is shown in Table VI-13 on the following pages.

OVERVIEW

# PROCESS

III FINANCE

IV CIP SUMMARY

V PRIORITIZATION

VI PROJECTS
BY CATEGORY

VII TEN-YEAR OUTLOOK VIII PROJECT DESCRIPTIONS

IX GLOSSARY

# Table VI-13. Flow and Treatment Capacity of GLWA CSO RTBs<sup>b</sup>

|                                    | Hubbell- Southfield                                    | Seven Mile                                                                                                             | Puritan-Fenkell         | Conner Creek     | Oakwood          |  |  |
|------------------------------------|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------|------------------|--|--|
| Year of Startup                    | 1999                                                   | 1999 1999                                                                                                              |                         | 2005             | 2012             |  |  |
| Drainage Area (Acres) <sup>a</sup> | 14,328                                                 | 508                                                                                                                    | 635                     | 21,840           | 1,500            |  |  |
| Retention Volume (MG)              | 22                                                     | 2.2                                                                                                                    | 2.8                     | 30               | 9.0              |  |  |
| In-System Storage (MG)b            | 4.4                                                    | 7                                                                                                                      | 7                       | 32               | 0                |  |  |
| Peak Flow Rates (cfs) <sup>c</sup> | 3,200                                                  | 656                                                                                                                    | 845                     | 13,962           | 1,660            |  |  |
| Compartments                       | 2                                                      | 2                                                                                                                      | 2                       | 4                | 2                |  |  |
| Sanitary Pump Station              | No                                                     | No                                                                                                                     | Yes                     | No               | Yes              |  |  |
| Influent                           | Gravity                                                | Gravity Gravity                                                                                                        |                         | Gravity          | Pumped           |  |  |
| Effluent                           | Gravity                                                |                                                                                                                        |                         |                  |                  |  |  |
| Dewatering                         | Gravity / Pumped                                       | Pumped                                                                                                                 | Gravity / Pumped        | Gravity / Pumped | Gravity / Pumped |  |  |
| Screening                          | 1.5-inch Catenary- Type<br>Bar Screens                 | 0.5-inch Open Space Centenary-Type Bar Screens  1.5-inch Centenary Type Bar Screens  Perforated Plate Screens (6-8 mm) |                         |                  |                  |  |  |
| Odor Control                       | Horizontal Wet<br>Scrubber with Sodium<br>Hypochlorite | Vertical Wet Scrubber w                                                                                                | ith Sodium Hypochlorite | Carbon A         | bsorption        |  |  |
| Flushing                           | Flushing Nozzles                                       | Flushing Nozzles Tipping Buckets Flushing Gates                                                                        |                         |                  |                  |  |  |
| Ventilation                        | Forced-Air                                             |                                                                                                                        |                         |                  |                  |  |  |
| Disinfection                       | Sodium Hypochlorite                                    |                                                                                                                        |                         |                  |                  |  |  |

<sup>&</sup>lt;sup>a</sup> Combined wet weather flow sources drained from tributary districts (acreage) is preferentially transported to the WRRF until Primary capacity is exceeded per established Operational Protocols; residual flows are transported to CSO Facilities.

<sup>&</sup>lt;sup>b</sup> Tributary upstream wet weather flow volume also captured and drained to basin during events and subsequently dewatered.

<sup>c</sup> Peak flow rates are dependent on discharge river elevation.

II CIP DEVELOPMENT

+ PROCESS

#### **CONNER CREEK CSO RTB**



Figure VI-40. Conner Creek CSO RTB

Detroit's largest CSO control facility, the Conner Creek CSO RTB eliminated three outfalls and has dramatically improved water quality in Conner Creek and the Detroit River since going into operation in November 2005. This RTB provides 62 million gallons of total storage, with 30 million gallons in the retention treatment basin and 32 million gallons in upstream structures. High-speed mixers are used to rapidly disinfect flows and achieve the required fecal coliform limits. This facility was sized to provide five minutes of detention for settling and disinfection for the peak flow from the 10-year, one-hour storm.

#### **HUBBELL-SOUTHFIELD CSO RTB**



Figure VI-41. Hubbell-Southfield CSO RTB

The Hubbell-Southfield CSO RTB is one of GLWA's most active, longest operating CSO facilities and the largest on the Rouge River. Since August 1999, it has been effectively capturing and treating combined sewage through screening, settling and disinfection to meet discharge permit requirements that protect public health. Sized to fit into the available land and site constraints, the basin has a 22-million-gallon storage capacity. Located next to the Tournament Players Championship Golf Course (TPC) in Dearborn, this RTB serves as an example of how these facilities can be good neighbors and blend in with the surrounding environment. The facility features an innovative design component that enables three different operational modes within the RTB and prevents resuspension of solids during large storms with high flow rates.

#### **OAKWOOD CSO RTB**

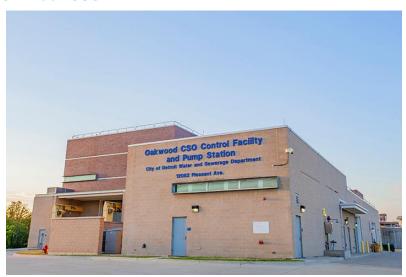



Figure VI-42. Oakwood CSO RTB

The Oakwood CSO RTB was placed in service in 2012. Located on the lower portion of the Rouge River immediately south of I-75, the 9-million-gallon RTB is designed to provide CSO treatment through storage plus fine screening and disinfection. This facility includes a major influent pumping station with capacity to pump 1,800 cubic feet per second (cfs) combined sanitary and storm flow. This pumping station increases the level of service for the Oakwood District and helps to alleviate basement flooding in the upstream area.

#### **PURITAN-FENKELL CSO RTB**



Figure VI-43. Puritan-Fenkell CSO RTB

Located in Eliza Howell Park, the Puritan-Fenkell CSO RTB is the third Rouge River CSO RTB. This facility successfully demonstrated that a facility sized to provide 20 minutes of detention time for settling and disinfection of the one-year, one-hour storm event peak flow is sufficient to meet protection of public health standards. The 2.8-million-gallon facility became operational in August 1999, and eliminated two untreated CSO outfalls.

V PRIORITIZATION

#### **SEVEN MILE CSO RTB**



Figure VI-44 Seven Mile CSO RTB

The Seven Mile CSO RTB was constructed at the same time as the Hubbell-Southfield and Puritan-Fenkell CSO RTBs with funding from the Rouge River National Wet Weather Demonstration Program. Located on the northeast corner of West Seven Mile Road and Shiawassee Drive, the roof of the basin also serves as the parking lot for the Greater Grace Temple. The RTB is sized to provide 30 minutes of detention time for settling and disinfection of the one-year, one-hour storm event peak flow. It has a 2.2million-gallon storage capacity. Two untreated CSO outfalls were eliminated when it went into operation in 1999.

### Combined Sewer Overflow Screening and Disinfection **Facilities**

A CSO Screening and Disinfection Facility (SDF) treats combined sewage. These are called flow-through facilities, and use fine screens to remove solids and sanitary trash from the combined sewage. Flows are injected with Sodium Hypochlorite disinfectant to kill bacteria before discharging to receiving waters (Detroit and Rouge Rivers). Materials removed by the screens are sent to the WRRF or hauled to a landfill for proper disposal. A summary of the overall flow and treatment capacity of the GLWA CSO SDFs is shown in Table VI-14 below.

Table VI-14. Flow and Treatment Capacity CSO Screening and **Disinfection Facilities** 

| Component Criteria                                                     | Baby<br>Creek       | Leib                         | St. Aubin                    |  |  |  |
|------------------------------------------------------------------------|---------------------|------------------------------|------------------------------|--|--|--|
| In Service Date                                                        | 2007                | 2002                         | 2002                         |  |  |  |
| Peak Hydraulic<br>Capacity <sup>a</sup>                                | 5,100 cfs           | 2,000 cfs                    | 310 cfs                      |  |  |  |
| Toward Treatment<br>Capacity                                           | 140 cfs             | 150 cfs                      | Not Applicable               |  |  |  |
| Screening Capacity                                                     | 5,100 cfs           | 1,550 cfs                    | 250 cfs                      |  |  |  |
| Disinfection Capacity (10 minute contact)                              | 5,100 cfs           | 1,550 cfs                    | 250 cfs                      |  |  |  |
| Dewatering Capacity                                                    |                     | Static Volume<br>in 24 hours | Static Volume<br>in 24 hours |  |  |  |
| Influent                                                               | Gravity /<br>Pumped | Gravity                      | Gravity                      |  |  |  |
| <b>Effluent</b> Gravity Gravity Gravity                                |                     |                              |                              |  |  |  |
| <sup>a</sup> Peak hydraulic capacity is dependent on river elevations. |                     |                              |                              |  |  |  |

#### BABY CREEK SCREENING AND DISINFECTION FACILITY



Figure VI-45. Baby Creek SDF

The Baby Creek facility is a screening and disinfection facility that uses fine screens and high-rate disinfection to treat combined sewage flows that pass through it. It is located at Miller and Industrial Drive in southwest Detroit at the city limit shared with Dearborn. High-energy mixers are being used to mix sodium hypochlorite to maximize bacterial kill and minimize discharge of residual chlorine to the Rouge River. The facility is rated for 5,100 cfs treatment capacity, although treatment flow rates vary based on the river elevation. The site area includes the Woodmere Pumping Station that services a 450-acre portion of the Baby Creek tributary area.

#### LEIB SCREENING AND DISINFECTION FACILITY



Figure VI-46. Leib SDF

The Leib facility was constructed to address a large outfall on the Detroit River and to demonstrate the effectiveness of fine screening (horizontal and vertical) in combination with 10 minutes of disinfection time for the design flow to meet protection of public health standards. High-energy mixers are being used to mix sodium hypochlorite to maximize bacterial kill and minimize discharge of residual chlorine to the Detroit River. The facility can treat a flow rate of up to 1,550 cfs. It began operation in 2002, and successfully achieved the required treatment levels during the demonstration period.

#### St. Aubin Screening and Disinfection Facility



Figure VI-47. St. Aubin SDF

The St. Aubin facility was built at the same time as the Leib facility and uses the same technology. High-energy mixers are being used to mix sodium hypochlorite to maximize bacterial kill and minimize discharge of residual chlorine to the Detroit River. While St. Aubin is much smaller, with about one fifth of the treatment capacity of Leib, it is important in addressing water quality along Chene Park (which frequently hosts concerts and other events). This facility has operated successfully since 2002.

#### 2.1.6. General Purpose

Refer to the General Purpose description on page II-6.

### 2.2. Field Services

### 2.2.1. General Purpose

Refer to the General Purpose description on page II-6.

### 2.2.2. Interceptor

The Regional Wastewater Collection System (RWCS) is responsible for the conveyance of wastewater and stormwater flows to the GLWA WRRF. The collection system is the oldest part

of the wastewater treatment and transportation system. Some sewers are over 130 years old and are still in service today.

The RWCS is comprised of approximately 195 miles of sewer mains. Approximately 184 miles of the mains are considered "Common Use" interceptors or trunk sewers, with the remaining 11 miles of mains being considered "Member Partner Connection" (i.e., a dedicated line connecting a suburban member partner to the GLWA WRRF with no other member partner taps to it). In addition, there are approximately 0.1 miles of force main operated and maintained by GLWA. See Figure VI-51, the map of the RWCS, and the list of all of GLWA-leased sewer main assets below. Information has been gathered in this table from best available sources, including various reference documents, as well as GIS information.

Figure VI-48, Figure VI-49, and Figure VI-50 depict the collection system inventory by material, diameter, and decade installed/age, respectively. The collection system ranges from 12 to 348 inch in diameter with an average age of 78 years.

Most of RWCS is Concrete Pipe (72%) and Brick Pipe (23%). The majority of RWCS are typically 60 inches and larger, of which 161-169 inch (12%), 120-129 (12%), and 102-108 inch (9%) are the most common conduit diameters / heights. Detroit and the region went through several growth periods of time evidenced by the greatest periods of water main installation of the 1920s (37%), 1960s (12%) and 1930s (9%).

In recent history, a condition inspection of the Detroit River Interceptor and Outfalls was performed in 2012. A prioritized condition assessment and renewal program has been underway since 2016 on the collection system gravity mains. This effort was initiated to address the aging collection system infrastructure in a proactive and methodic fashion. Over the past two years all 184 miles of sanitary sewer interceptor has been inspected as part of this program. Follow-up repairs and inspections are being

**V** PRIORITIZATION

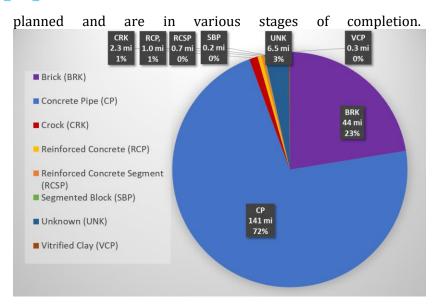



Figure VI-48. Collection system inventory by material

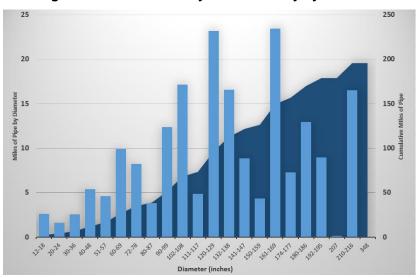



Figure VI-49. Collection system inventory by diameter / height

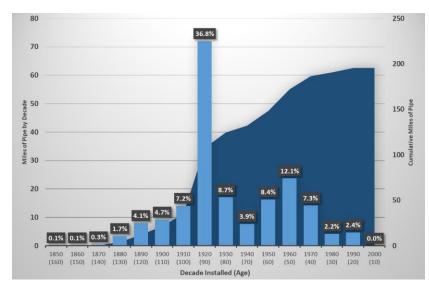



Figure VI-50. Collection system inventory by decade installed / age

Figure VI-51 depicts only those interceptors and trunk sewers operated/maintained (leased) by GLWA. The suburban communities own, operate, and maintain all of their collection system up to the points of connection to the RWCS.

There are three primary interceptors that make up the RWCS and ultimately serve all the combined drainage districts. Those interceptors are the Detroit River Interceptor (DRI), Oakwood-Northwest Interceptor (O-NWI), and North Interceptor East Arm (NI-EA). These interceptors are shown in red/green. These primary interceptors total approximately 44 miles in length with the remaining 151 miles being trunk sewers that primarily service the City of Detroit's 9 drainage districts.

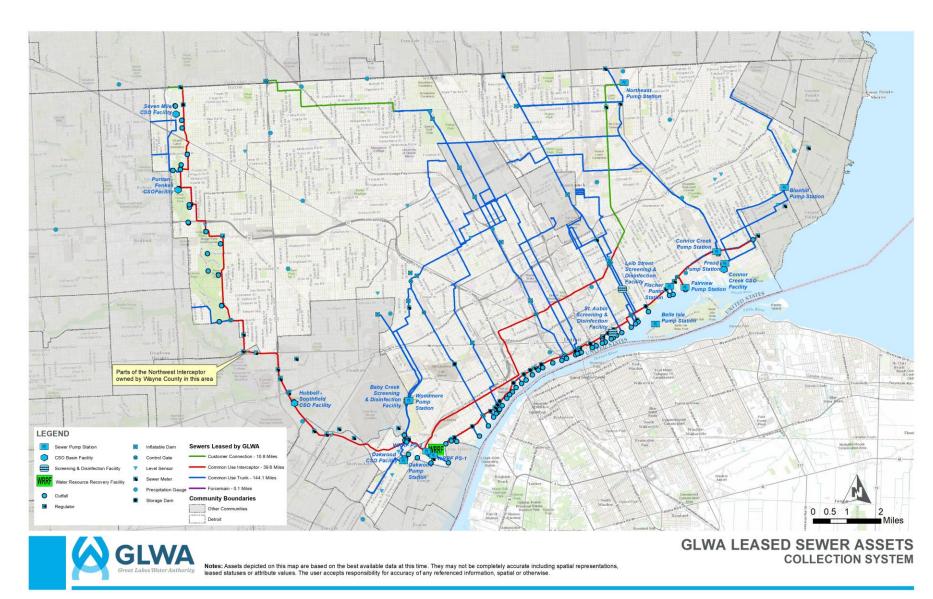



Figure VI-51. Sewer interceptors and trunk sewers operated/maintained by GLWA



OVERVIEW

II CIP DEVELOPMENT + PROCESS

III FINANCE

IV CIP SUMMARY

**V** PRIORITIZATION

VI PROJECTS
BY CATEGORY

VII TEN-YEAR OUTLOOK VIII PROJECT DESCRIPTIONS

IX GLOSSARY

Table VI-15. Sewer interceptors and trunk sewers operated/maintained by GLWA

|                                                                              | Tubio II I             | 0.00    | interceptors and                     |                                         | poratourmani                                    | itaiiioa i    | ., <b>-</b> |     |                 |         |                       |
|------------------------------------------------------------------------------|------------------------|---------|--------------------------------------|-----------------------------------------|-------------------------------------------------|---------------|-------------|-----|-----------------|---------|-----------------------|
|                                                                              |                        | Length  | a.                                   |                                         | Drains to                                       | Yea<br>Consti | ructed      | (ye | Range<br>ears - | Average | Inspection<br>Month / |
| Sewer Name                                                                   | Type                   | (miles) | Size                                 | Material                                | Interceptor                                     | (year -       |             |     | ars)            | Age     | Year                  |
| 6 Mile Sewer                                                                 | Trunk                  | 5.0     | 9'-10.5'                             | Concrete / Brick                        | DRI                                             | 1921          | 1927        | 98  | 92              | 95      | 9/2017 to<br>1/2018   |
| 6 Mile Sewer East                                                            | Trunk                  | 0.4     | 10.5'                                | Concrete                                | DRI                                             | 1921          | -           | 98  | -               | 98      | 9/17                  |
| 6 Mile Sewer West                                                            | Trunk                  | 0.5     | 6.25'-7.25'                          | Concrete                                | O-NWI                                           | 1930          | -           | 89  | -               | 89      | 12/2017               |
| 7 Mile Sewer                                                                 | Trunk                  | 4.2     | 5.5'-11.5'                           | Concrete                                | DRI & NIEA                                      | 1921          | 1924        | 98  | 95              | 97      | 8/2017 to<br>11/2017  |
| 7 Mile Sewer West                                                            | Trunk                  | 0.8     | 9.25'                                | Brick                                   | O-NWI                                           | 1931          | -           | 88  | -               | 88      | 10/2017               |
| 7 Mile Sewer West Relief                                                     | Trunk                  | 0.7     | 10'                                  | Concrete                                | DRI & NIEA                                      | 1965          | 1967        | 54  | 52              | 53      | 8/2017 to<br>10/2017  |
| 7 Mile Sewer East Relief                                                     | Trunk                  | 3.2     | 9'-13.75'                            | Concrete                                | DRI                                             | 1960          | 1962        | 59  | 57              | 58      | 10/2017               |
| 8 Mile-Centerline Sewer /<br>Connors Ave. Arm                                | Trunk                  | 0.7     | 1.5'-8.5'                            | Concrete / Brick<br>/ Unknown           | DRI                                             | 1928          | 1930        | 58  | -               | 58      | 4/2018 to<br>8/2018   |
| Ashland Relief Sewer                                                         | Trunk                  | 1.7     | 11.5'-16'                            | Concrete                                | DRI                                             | 1961          | -           | 81  | -               | 81      | 11/2016 to<br>12/2016 |
| Baby Creek (Dry Weather Line)                                                | Trunk                  | 4.3     | 3'                                   | Concrete                                | O-NWI                                           | 1938          | -           | 57  | -               | 57      | 12/2017 to<br>1/2018  |
| Baby Creek (Wet Weather<br>Line)                                             | Trunk/CSO<br>Storage   | 4.3     | 14.5'x17.5'                          | Concrete                                | N/A - Rouge<br>River, Miller Rd<br>Gate Outfall | 1962          | -           | 97  | -               | 97      | 12/2017 to<br>1/2018  |
| Bates St. Sewer                                                              | Trunk                  | 5.4     | 1' - 13.5'<br>3'x4.5' (Box)          | Concrete / Brick<br>/ Clay /<br>Unknown | DRI                                             | 1922          | -           | 90  | -               | 90      | 9/2017 to<br>10/2017  |
| Berg Sewer                                                                   | Customer<br>Connection | 0.1     | 1.75'                                | Concrete / Brick                        | O-NWI                                           | 1929          | -           | 107 | 96              | 102     | 9/2017 to<br>10/2017  |
| Clark Sewer, Morell St. Sewer,<br>Extension to Morrell, Tuxedo<br>Ave. Sewer |                        | 8.2     | 5'-14'                               | Concrete / Brick<br>/ Unknown           |                                                 | 1912          | 1923        | 65  | 62              | 64      | 8/2017 to<br>10/2017  |
| Conant-Mt. Elliot Relief<br>Sewer                                            | Trunk                  | 8.2     | 10.5'-16.25'                         | Concrete                                | DRI & NIEA                                      | 1954          | 1957        | 97  | 91              | 94      | 9/2017 to<br>10/2017  |
| Connors Creek Enclosure                                                      | Trunk                  | 11.5    | 12'x17.5' (Box)<br>12.9'x17.5' (Box) | Concrete / Brick                        | DRI                                             | 1922          | 1928        | 49  | -               | 49      | 9/2016 to<br>12/2017  |
| Dequindre Interceptor                                                        | Trunk                  | 0.9     | 9'                                   | Concrete                                | DRI & NIEA                                      | 1970          | -           | 98  | 92              | 95      | -                     |
| Detroit River Outfalls                                                       | Outfalls               | 10.7    | 1'-15.5'<br>(Varying Shapes)         | Concrete / Brick<br>/ Clay /<br>Unknown | Detroit River                                   | 1885          | 1967        | 134 | 52              | 93      | 10/2016               |
| Detroit River Interceptor (DRI)                                              | Interceptor            | 12.7    | 6'-16'                               | Concrete / Brick                        | WRRF                                            | 1913          | 1939        | 106 | 80              | 93      | 07/2012 to<br>10/2016 |



OVERVIEW

II CIP DEVELOPMENT
+ PROCESS

ENT III FINANCE

IV CIP SUMMARY

V PRIORITIZATION

VI PROJECTS BY CATEGORY VII TEN-YEAR OUTLOOK VIII PROJECT DESCRIPTIONS

IX GLOSSARY

| Sewer Name                                                                                                         | Туре                   | Length (miles) | Size                                         | Material                                            | Drains to<br>Interceptor | Yea<br>Constr<br>(year - | ucted | (ye | Range<br>ars -<br>ars) | Average<br>Age | Inspection<br>Month /<br>Year |
|--------------------------------------------------------------------------------------------------------------------|------------------------|----------------|----------------------------------------------|-----------------------------------------------------|--------------------------|--------------------------|-------|-----|------------------------|----------------|-------------------------------|
| East Jefferson Relief Sewer                                                                                        | Trunk                  | 1.1            | 14'                                          | Concrete                                            | DRI                      | 1927                     | -     | 92  | -                      | 92             | 12/2016                       |
| Elmer-Ternes Sewer (West<br>End Relief)                                                                            | Trunk                  | 2.6            | 14.5'<br>14.5x14.5' (Box)                    | Concrete                                            | O-NWI                    | 1962                     | 1965  | 57  | 54                     | 56             | 8/2017 to<br>10/2017          |
| Evergreen-Farmington<br>Connection                                                                                 | Customer<br>Connection | 4.8            | 8'                                           | Concrete                                            | DRI & NIEA               | 1991                     | -     | 28  | -                      | 28             | -                             |
| First-Hamilton Relief Sewer                                                                                        | Trunk                  | 8.8            | 7'-15.5'<br>2.7'x4' - 10'x10.5'<br>(Box)     | Concrete                                            | DRI & NIEA               | 1956                     | 1970  | 63  | 49                     | 56             | 8/2017 to<br>10/2017          |
| Fisher Ave. Storm Sewer                                                                                            | Trunk                  | 0.5            | 10.5'x13.75'                                 | Concrete                                            | DRI / Detroit<br>River   | 1928                     | 1965  | 91  | 54                     | 73             | -                             |
| Fort Street Sewer                                                                                                  | Trunk                  | 2.7            | 2'-10'                                       | Concrete /<br>Crock / Brick /<br>Segmented<br>Block | O-NWI                    | 1924                     | 1939  | 95  | 80                     | 88             | 9/2017 to<br>3/2018           |
| Fox Creek Relief Sewer,<br>Cadieux Road Sewer                                                                      | Trunk                  | 4.0            | 9.25'-16'                                    | Concrete                                            | DRI                      | 1923                     | 1953  | 96  | 66                     | 81             | 11/2016 to<br>12/2016         |
| Jos. Campau Sewer                                                                                                  | Trunk                  | 5.0            | 3.5'-11.5'                                   | Concrete / Brick                                    | DRI                      | 1921                     | 1957  | 98  | 62                     | 80             | 9/2017 to<br>11/2017          |
| Joy Road Sewer, Highland<br>Park Sewer - Edison Ave.<br>Arm, Highland Park Arm                                     | Trunk                  | 4.1            | 8.25'-14'                                    | Concrete / Brick                                    | DRI & NIEA &<br>O-NWI    | 1922                     | 1975  | 97  | 44                     | 71             | 9/2017 to<br>11/2017          |
| Linwood Ave. Sewer, Lateral<br>Sewer - Puritan & Linwood -<br>Puritan Ave. Arm                                     | Trunk                  | 3.1            | 1.25'-9.5'<br>3'x4.5' (Box)<br>3.3'x5' (Box) | Concrete / Brick<br>/ Clay                          | DRI                      | 1919                     | 1921  | 100 | 98                     | 99             | 9/2017 to<br>2/2018           |
| Livernois Relief Sewer                                                                                             | Trunk                  | 5.0            | 3'-10.5'<br>10'x10' (Box)                    | Concrete                                            | DRI & NIEA               | 1949                     | 1972  | 70  | 47                     | 59             | 9/2017 to<br>10/2017          |
| Lonyo Sewer                                                                                                        | Trunk                  | 3.4            | 13.6'<br>14.5'x14' (Box)                     | Concrete / Brick                                    | O-NWI                    | 1922                     | -     | 97  | -                      | 97             | 9/2017                        |
| Lynch Road Sewer, Davison<br>Ave. Sewer, Chrysler Freeway<br>Davison Sewer Alterations,<br>Connor Creek Connection | Trunk                  | 4.9            | 5.5'-11.5'                                   | Concrete / Brick                                    | DRI                      | 1920                     | 1975  | 99  | 44                     | 72             | 7/2017                        |
| Mack Avenue Relief Sewer                                                                                           | Trunk                  | 2.2            | 9.25'-14'                                    | Concrete                                            | DRI                      | 1967                     | -     | 52  | -                      | 52             | 11/2016                       |
| Mt. Elliot Ave. Sewer, Miller<br>Road Sewer, Carrie Ave.<br>Relief, and Laterals                                   | Trunk                  | 6.4            | 1.25'-9'                                     | Crock / Brick                                       | DRI                      | 1913                     | 1930  | 106 | 89                     | 98             | 7/2017 to<br>3/2018           |
| North Interceptor East Arm<br>(NIEA) - Upper Portion,<br>Northeast SPS to Gratiot                                  | Interceptor            | 6.4            | 12'-17.5'                                    | Concrete                                            | WRRF & DRI               | 1971                     | 1974  | 48  | 45                     | 47             | 7/2015 to<br>8/2015           |

The RWCS serves 77 suburban communities that cover an area of 1,100 square miles. A large majority of the suburban communities are served by separated storm/sewer systems. The RWCS is comprised of 27 sewer districts representing drainage districts within the City of Detroit, drainage districts from adjoining counties/municipal districts, and various districts serving individual suburban communities. The sewer service areas served by the RWCS are as shown in Figure VI-52.

Nine sewer districts: Rouge River, Hubbell, Southfield, Baby Creek, Conner Creek, Oakwood, Central City, Fox Creek, and East lefferson.

City of Detroit Sewer Districts

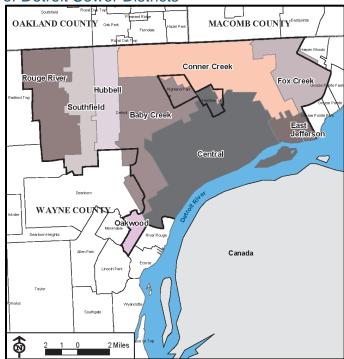



Figure VI-52. Sewer districts within Detroit

### **GLWA Regional Sewer Districts**

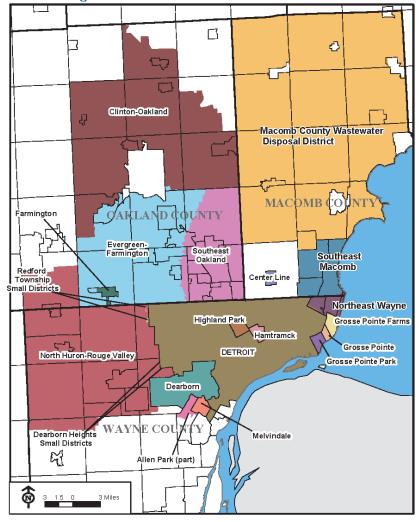



Figure VI-53. Sewer districts served by GLWA

# **Total GLWA Sewer Districts**

Communities served by the varying sewer districts are provided below.

Table VI-16. GLWA Service Districts & Communities Served

| County/<br>City | District                                                                                 | Communities                                                                                                                                                                |
|-----------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Detroit         | Rouge River                                                                              | City of Detroit                                                                                                                                                            |
| Detroit         | Hubbell                                                                                  | City of Detroit                                                                                                                                                            |
| Detroit         | Southfield                                                                               | City of Detroit                                                                                                                                                            |
| Detroit         | Baby Creek                                                                               | City of Detroit, Highland Park                                                                                                                                             |
| Detroit         | Conner Creek                                                                             | City of Detroit, Highland Park,<br>Hamtramck                                                                                                                               |
| Detroit         | Oakwood                                                                                  | City of Detroit                                                                                                                                                            |
| Detroit         | Central City                                                                             | City of Detroit                                                                                                                                                            |
| Detroit         | Fox Creek                                                                                | City of Detroit                                                                                                                                                            |
| Detroit         | East Jefferson                                                                           | City of Detroit                                                                                                                                                            |
| Macomb          | Southeast<br>Macomb Sanitary<br>Sewer District<br>(SEMSD)                                | St. Clair Shores, East Pointe, Roseville<br>(Through NESDS)                                                                                                                |
| Macomb          | Macomb County Wastewater District (part of Oakland Macomb Interceptor Drainage District) | Fraser, Sterling Heights, Clinton Twp,<br>Harrison Twp, Shelby Twp, Utica,<br>Macomb Twp, Waldenburn,<br>Chesterfield, New Haven, Lenox, Ray,<br>Washington Twp            |
| Macomb          | Centerline                                                                               | City of Centerline                                                                                                                                                         |
| Oakland         | Evergreen-<br>Farmington<br>District                                                     | Farmington Hills, Orchard Lake<br>Village, Keego Harbor, Bloomfield<br>Hills, Bloomfield Twp, Birmingham,<br>Franklin, Beverly Hills, Lathrup<br>Village, Southfield, Troy |

| County/ | District                                                                        | Communities                                                                                                                                                                                                                    |
|---------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| City    |                                                                                 | - Communicio                                                                                                                                                                                                                   |
| Oakland | Southeast Oakland County District (George W. Kuhn Drainage District)            | Troy, Oak park, Madison Heights,<br>Clawson, Hazel Park, Royal Oak,<br>Pleasant Ridge, Huntington Woods,<br>Berkley, Royal Oak Twp, Ferndale                                                                                   |
| Oakland | Clinton Oakland District (part of Oakland Macomb Interceptor Drainage District) | West Bloomfield Twp, Waterford<br>Twp, Lake Angelis, Auburn Hills,<br>Rochester Hills, Rochester, Oakland<br>Twp, Orion Twp, Village of Clarkston,<br>Independence Twp, Orion Twp, Lake<br>Orion, Oxford Twp, City of Oxford   |
| Oakland | City of<br>Farmington                                                           | City of Farmington                                                                                                                                                                                                             |
| Wayne   | Rouge Valley<br>Sewage Disposal<br>System (RVSDS)                               | City of Inkster, City of Wayne, Canton<br>Twp, Van Buren Twp, City of<br>Westland, Garden City, Dearborn<br>heights, Redford Twp, City of Livonia,<br>City of Plymouth, City of Northville,<br>City of Novi, Novi Twp, Romulus |
| Wayne   | Northeast<br>Sewage Disposal<br>System (NESDS)                                  | Harper Woods, Grosse Pointe Shores,<br>Grosse Pointe Woods                                                                                                                                                                     |
| Wayne   | Grosse Pointe<br>Farms                                                          | Grosse Pointe Farms                                                                                                                                                                                                            |
| Wayne   | Grosse pointe<br>Park                                                           | Grosse pointe Park                                                                                                                                                                                                             |
| Wayne   | Grosse Pointe                                                                   | Grosse Pointe                                                                                                                                                                                                                  |
| Wayne   | City of Dearborn                                                                | City of Dearborn                                                                                                                                                                                                               |
| Wayne   | Melvindale                                                                      | Melvindale                                                                                                                                                                                                                     |
| Wayne   | Allen Park                                                                      | Allen Park                                                                                                                                                                                                                     |
| Wayne   | Redford<br>Township                                                             | Redford Township                                                                                                                                                                                                               |
| Wayne   | Dearborn heights                                                                | Dearborn heights                                                                                                                                                                                                               |
| Wayne   | Harper Woods                                                                    | Harper Woods                                                                                                                                                                                                                   |

+ PROCESS

### **Systems Control Center**

The Systems Control Center operates and maintains five Wastewater Pumping Stations located in the GLWA collection system that assist conveyance of wastewater and stormwater flows to the WRRF. They are Conner Sewage Pumping Station, Fairview Sewage Pumping Station, Freud Sewage Pumping Station, Northeast Sewage Pumping Station, and Oakwood Sewage Pumping Station. These facilities are described in the table below.

GLWA maintains 13 in-system storage devices throughout central Detroit and seven in-system gates throughout the west side of Detroit to maximize the storage capacity of sewers during storms. The in-system storage devices are rubber, inflatable dams located inside large trunk sewers. The in-system gates are mechanical gates located inside outfall sewers. These devices are designed to temporarily retain flows in the Sewer System during storm events up to a certain level before discharge to the river occurs. These devices operate automatically but are monitored by GLWA staff. These staff members coordinate and apply operational protocols prior to storm events to dewater the wastewater collection system and treatment facilities to maximize the available insystem storage capacity. Along with the flow control devices, the Systems Control Center team also operates and maintains many rain gauges and level sensors throughout the RWCS.

#### **General Purpose** 2.3.1.

Refer to the General Purpose description on page II-6.

#### 2.3.2. **Wastewater Pumping Stations**

Wastewater Pump Stations pump wastewater, and when necessary excess storm water, to the WRRF. Most of the wastewater collection system is gravity fed, but in low-lying areas, lift stations are necessary to lift wastewater to a higher elevation in order for flow by gravity to be possible. There are nine sewer lift stations in the wastewater collection system; an example is shown in Figure VI-54.

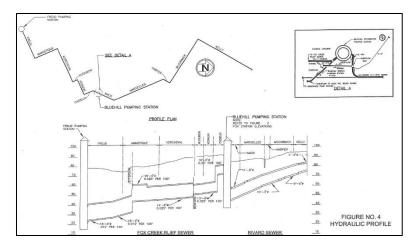



Figure VI-54. Hydraulic Profile at Bluehill Station

### Conner Creek Pump Station



Figure VI-55. Conner Creek Pump Station

| Max Wet Well Level | 74 ft                 |
|--------------------|-----------------------|
| Sanitary Pumps     | SN9 - 500 Hp, 96 MGD  |
|                    | SN10 - 350 Hp, 96 MGD |
|                    | SN11 - 500 Hp, 96 MGD |
|                    | SN12 - 200 Hp, 48 MGD |
| Storm Pumps        | ST1- 2300 Hp, 320 MGD |
|                    | ST2- 2300 Hp, 320 MGD |
|                    | ST3- 2300 Hp, 320 MGD |
|                    | ST4- 2300 Hp, 320 MGD |
|                    | ST5- 2250 Hp, 320 MGD |
|                    | ST6- 2250 Hp, 320 MGD |
|                    | ST7- 2300 Hp, 320 MGD |
|                    | ST8- 2300 Hp, 320 MGD |

Sewage flows by gravity to the Conner Creek Pumping Station though the western and eastern East Jefferson Avenue relief sewers. These sewers are designed to carry both sanitary sewage and storm water to the Conner Creek Pumping Station wet wells. The Conner Creek Pumping Station is required because the elevation of the relief sewers is too low to allow the sewage to continue to flow by gravity to subsequent treatment facilities or to the Conner Creek CSO Basin. During normal dry weather flow, wastewater is discharged to the DRI. During wet weather, the wastewater is discharged to the Conner Creek CSO.

This station consists of a sanitary pump house, stormwater pump house, switch house, and backwater gates. During normal dry weather flow, wastewater is discharged by four sanitary pumps (two 71 MGD, one 48 MGD, and one 38 MGD) to the Detroit River Interceptor (DRI). During wet weather, eight stormwater pumps (318 MGD each) discharge combined wastewater to the Conner Creek CSO

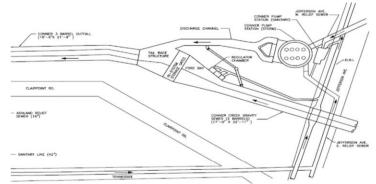



Figure VI-56. Schematic of Conner Creek Pump Station



II CIP DEVELOPMENT + PROCESS

III FINANCE

IV CIP SUMMARY VI PROJECTS BY CATEGORY VII TEN-YEAR OUTLOOK VIII PROJECT DESCRIPTIONS

IX GLOSSARY

#### Table VI-17. Summary of Major Rahabilitation and Improvements Projects at the Conner Pump Station

**V** PRIORITIZATION

| Contract No.         | Contract Title                                                         | Summary of Work                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Year          |
|----------------------|------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| TW-24-A              | Conner Creek                                                           | N/A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |
| PC-265               | Regulator Improvement-Conner Station                                   | N/A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |
| PW-212               | Conner Creek Pumping Station Motor<br>Driven Pumping Unit Nos. 5 and 6 | Installation of Storm Water Pumps 5 and 6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1947          |
| PW-3042              | Conner Creek Sanitary Pumping Station                                  | Construction of the sanitary pump station.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1958          |
| PC-674               | Conner Station Rehabilitation                                          | Rehabilitation of buildings at the Conner Station site and Fox Creek Backwater Gate Building. Rehabilitation of the buildings include masonry work, windows and doors, roofing and sheet metal, heating and ventilating systems, toilet facilities, lighting and electrical systems, and interior finishes.  Rehabilitation of the sanitary pumps, sanitary pump motors and controls, replacement of the control switchboard for the storm water pumps, and repair the stormwater pumps. Also included are new sanitary pump isolation valves, revised suction and discharge piping, hydraulic modeling of the sanitary wet well, and replacement of stormwater sump pumps.  Rehabilitation of the site shall include replacement of all roadways, curbs, sidewalks, site lighting, and demolition of the oil pump house. | May 2009      |
| PC-713               | Authority-Wide Instrumentation, Control and Computer Systems Program   | Ovation System.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2007          |
| DWS-828              | Emergency Generators                                                   | Installed the four (4) Emergency Generators with power of 2MW.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | December 1999 |
| Maintenance Contract | Transformer                                                            | Replaced the powerhead on Transformer 1 and painted.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2015          |
| PC-773               | Ovation Control                                                        | Control Window upgrade from Window NT to Window 7.0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2015          |
|                      |                                                                        | AT&T's Wide Area Network Upgrade.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | October 2016  |

V PRIORITIZATION

#### Fairview Pump Station



Figure VI-57. Fairview Pump Station

| Max Wet Well Level | 20 ft                |
|--------------------|----------------------|
| Sanitary Pumps     | SN1 - 700 Hp, 96 MGD |
|                    | SN2 - 700 Hp, 96 MGD |
|                    | SN3 - 700 Hp, 96 MGD |
|                    | SN4 - 400 Hp, 48 MGD |

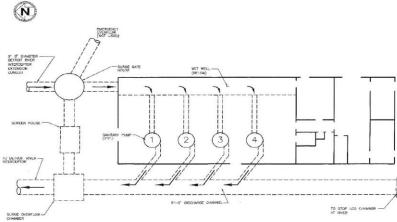



Figure VI-58. Fairview Pump Station Schematic

The Fairview Pumping Station is an interceptor pumping station on the DRI, which provides about 22 feet of lift. Wastewater flow from the DRI is lifted by pumps at the Fairview Pumping Station and discharged into the downstream DRI to continue on to the Detroit WWTP. The function of this station is to pump the wastewater received in the wet well and return it as efficiently and quickly as possible to the downstream DRI. The station facilities include the influent DRI, gatehouse, and pumping station. The pumping station consists of the pump house and wet well.

Table VI-18. Summary of Major Rehabilitation and Improvements Projects at the Fairview Pump Station

| Contract<br>No. | Contract Title                                                                   | Work Summary                                                                   | Year                                  |
|-----------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------|
| PW              | Fairview Pumping<br>Station                                                      | Construction of Fairview Pump Station.                                         | 1913                                  |
| PW-679          | Fairview Additions and Alterations                                               | Modification and upgrades at Fairview Pump Station.                            | 1949                                  |
| PC-264          | Modifications to<br>Fairview Pumping<br>Station                                  | Modification of riser chamber and cover, stop log chamber, and surge overflow. | Set of the<br>drawings:<br>April 1972 |
| PC-606          | Fairview Seawall<br>Phase II                                                     | N/A.                                                                           |                                       |
| PC-684          | Fairview Pumping<br>Station<br>Rehabilitation                                    | Replacement of the Pump 2 and associated equipment.                            | 1995                                  |
| PC-713          | Authority-Wide<br>Instrumentation,<br>Control and<br>Computer Systems<br>Program | Ovation System.                                                                | 2007                                  |
| PC-773          | Ovation Control                                                                  | Control Window upgrade from Window NT to Window 7.0.                           | 2015                                  |
|                 |                                                                                  | AT&T's Wide Area<br>Network Upgrade.                                           | October<br>2016                       |

### Freud Pump Station



Figure VI-59. Freud Pump Station

| Max Wet Well Level | 71 ft                 |
|--------------------|-----------------------|
| Sanitary Pumps     | SN9 - 200 Hp, 27 MGD  |
|                    | SN10 - 200 Hp, 13 MGD |
| Storm Pumps        | ST1 - 3000 Hp, 290MGD |
|                    | ST2 - 3000 Hp, 290MGD |
|                    | ST3 - 3000 Hp, 290MGD |
|                    | ST4 - 3000 Hp, 290MGD |
|                    | ST5 - 3000 Hp, 290MGD |
|                    | ST6 - 3000 Hp, 290MGD |
|                    | ST7 - 3000 Hp, 290MGD |
|                    | ST8 - 3000 Hp, 290MGD |

The Freud Pump Station consists of a pump house, wet well, and transformer enclosure area. All wastewater flow to the Freud Pumping Station is combined sanitary sewage and stormwater overflow from the East Jefferson Relief Sewer. This overflow occurs when the handling capacity of the Conner Creek Station has been exceeded. The station's primary goal is to store as much wastewater as possible until it can be pumped back to the Conner Creek Pumping Station using dewatering and sanitary pumps. From the Conner Creek Station, the wastewater is transported to

Detroit WRRF. The Freud Pumping Station wet well and corresponding relief sewers provide 20 million gallons of in-line storage.

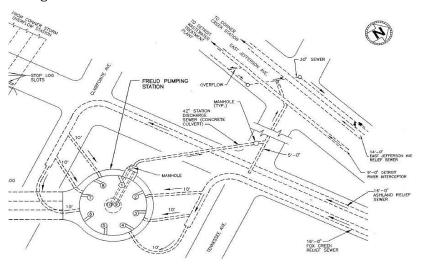



Figure VI-60. Freud Pump Station Schematic

III FINANCE

# Table VI-19 Summary of Major Rehabilitation and Improvements Projects at the Freud Pump Station

| Contract | Contract Title                                                       | Work Summary                                                                                                                                                                                                                                                                                            | Year             |
|----------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| PC-268   | Freud Station<br>Sewerage<br>Discharge                               | N/A.                                                                                                                                                                                                                                                                                                    |                  |
| PC-664   | Freud Station<br>Improvements<br>Pump<br>Replacement                 | Replacement of pumps.                                                                                                                                                                                                                                                                                   | 1989             |
| PC-685   | Bluehill and Freud<br>Sewage Pumping<br>Station<br>Rehabilitation    | Freud Sewage Pumping Station work includes removal and replacement of switchgear and protective relaying and controls; maintaining of four bus electrical architecture; extensive rework of conduit and cables for power and control system; and other electrical work due to relocation of switchgear. | 2011             |
| PC-713   | Authority-Wide Instrumentation, Control and Computer Systems Program | Ovation System.                                                                                                                                                                                                                                                                                         | 2007             |
| DWS-828  | Emergency<br>Generators                                              | Installed the four (4) Emergency Generators with power of 2MW.                                                                                                                                                                                                                                          | December<br>1999 |
| PC-773   | Ovation Control                                                      | Control Window<br>upgrade from<br>Window NT to<br>Window 7.0.                                                                                                                                                                                                                                           | 2015             |
|          |                                                                      | AT&T's Wide Area<br>Network Upgrade.                                                                                                                                                                                                                                                                    | October<br>2016  |

#### Northeast Pump Station



Figure VI-61. Northeast Pump Station

| Max Wet Well Level | 26 ft                 |
|--------------------|-----------------------|
| Sanitary Pumps     | SN1 - 2000 Hp, 96 MGD |
|                    | SN2 - 2250 Hp, 96 MGD |
|                    | SN5 - 2000 Hp, 65 MGD |
|                    | SN6 - 2000 Hp, 96 MGD |

The Northeast Pump Station consists of a wet well and pump house. The station receives wastewater from the 12.75-foot Corridor Interceptor. The Corridor Interceptor receives flow from the 15 Mile Interceptor, which receives flow from the Romeo Arm and Lakeshore Interceptor through the Clintondale Station. The wastewater flow to the station is nearly all sanitary sewage, with only a small portion of stormwater from suburban communities. The main goal of the pumping station is to transport wastewater to the Detroit WRRF as quickly as possible. The Northeast Pump Station is designed to pump all wastewater from the Corridor and Lakeshore connection into the 17.5-foot North Interceptor, East Arm. The wastewater flow from the North Interceptor East Arm is currently diverted to the Seven Mile Relief Sewer where it is transported by gravity through the Conant-Mt. Elliot Sewer and the DRI to the Detroit WRRF. The station receives wastewater



flow from all the communities of Macomb County (except the cities of Centerline and Warren), northeastern communities of Oakland County, and all areas served by the Lakeshore Interceptor through the Clintondale Station. The pumping station currently has six sanitary pumps with a total combined capacity of 355.4 MGD.

Table VI-20. Summary of Major Rehabilitation and Improvements Projects at the Northeast Pump Station

| Contract<br>No. | Contract Title                                                                | Work Summary                                                                                                                                                         | Year                               |
|-----------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| PC-216          | Northeast Sewage<br>Pumping Station                                           | The Northeast Sewage Pumping Station was built with this contract. The station consists of wet well, pump house (three sanitary pumps 1, 5, and 6), and transformer. | 1969                               |
| PC-672          | Northeast Sewage<br>Station Improvements                                      | N/A.                                                                                                                                                                 |                                    |
| PC-713          | Authority-Wide<br>Instrumentation,<br>Control and Computer<br>Systems Program | Ovation System.                                                                                                                                                      | 2007                               |
| PC-736          | Northeast Sewage<br>Station-Pump No. 2<br>Installation                        | Installation of the new Pump No. 2.                                                                                                                                  | May 2006<br>(As-built<br>drawings) |
| DWS-828         | Emergency<br>Generators                                                       | Installed the tree (3) Emergency Generators with power of 2MW.                                                                                                       | December<br>1999                   |
| PC-773          | Ovation Control                                                               | Control Window<br>upgrade from<br>Window NT to<br>Window 7.0.                                                                                                        | 2015                               |
|                 |                                                                               | AT&T's Wide Area<br>Network Upgrade.                                                                                                                                 | October<br>2016                    |

### Oakwood Pump Station



Figure VI-62. Oakwood Pump Station

| Max Wet Well Level | 79 ft         |               |
|--------------------|---------------|---------------|
| Sanitary Pumps     | SN1 - 6.4 MGD |               |
|                    | SN2 - 6.4 MGD |               |
|                    | SN3 - 6.4 MGD |               |
|                    | SN4 - 6.4 MGD |               |
| Storm Pumps        | ST1 - 97 MGD  | ST5 - 177 MGD |
| _                  | ST2 - 97 MGD  | ST6 - 177 MGD |
|                    | ST3 - 177 MGD | ST7 - 177 MGD |
|                    | ST4 - 177 MGD | ST8 - 177 MGD |

The Oakwood Pump Station receives flow through a combined sewer collection system from Junction Chamber No. 1, which is upstream from the pumping station. Once all flows are combined at Junction Chamber No. 1, they are conveyed into the pump station through a pair of 18-foot diameter influent conduits. The combined wastewater, consisting of both sanitary and storm flows, are managed by the pump station. During normal operation, the combined wastewater is pumped by the sanitary pumps to the Detroit WRRF. When the flows into the facility exceed the capacity of these pumps during storm events, the pump station storm pumps convey any excess flow to the screenings facility and then into two 4.5 MG CSO Basins.

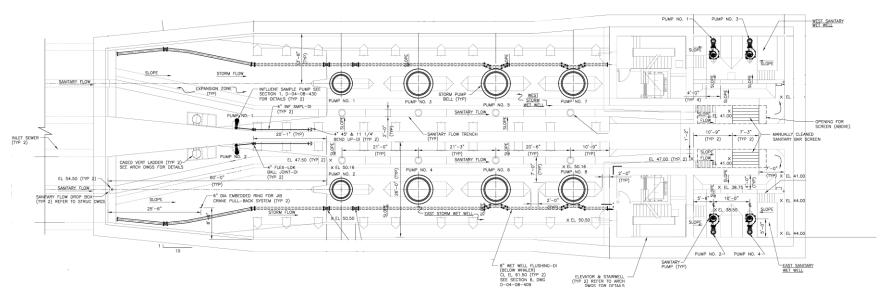



Figure VI-63. Oakwood Pump Station Schematic Table VI-21. Wastewater Pumping Stations

**Sanitary Capacity Storm Capacity** No. of Pumps Name of Pump Location **Function DESIGN MAXIMUM DESIGN MAXIMUM** Station SANITARY **STORM** MGD MGD **CFS** MGD **CFS** MGD **CFS CFS** Sanitary / Conner / GLWA 12244 East Jefferson, Detroit 158.4 245 229.5 355 2226 3444 2544 3936 4 8 Storm Fairview / GLWA 202 Parkview, Detroit 242.3 375 339.3 525 Sanitary 4 Sanitary / Freud / GLWA 12300 Freud, Detroit 12.96 20 35.64 2031 2322 3592 2 8 55 3143 Storm Northeast / GLWA 11000 East Eight Mile, Detroit 258.4 400 Sanitary 162 251 4 Sanitary / Oakwood / GLWA 12330 Sanders, Detroit 13 20 26 40 246.9 382 315.4 488 4 8 Storm Puritan-Fenkell / Fenkell East of Telegraph, Detroit, Sanitary 2.2 2 2.8 1.4 4.4 **GLWA** MI 48223 Pumps

**V** PRIORITIZATION

# 2.3.3. In System Devices (Dams, ISD's) Level Sensor (LS)

Level sensors detect the level of liquid in the sewers. This information is used to determine the best way to store stormwater, locate possible sewer overflows, and monitor dry weather wastewater pumping operations. There are 25 sewer level sensors located and monitored throughout the collection system. Overall, there are more than 150 level sensors in the entire System. An example is shown in Figure VI-64.

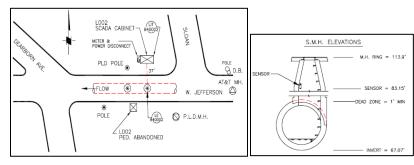



Figure VI-64. Example of a level sensor at West Jefferson and Sloan

#### Inflatable Storage Dam (ISD)

Inflatable Storage Dams, as illustrated in Figure VI-65, are utilized to detain upstream sewage in order to regulate flows to the WRRF. The dams can be remotely deflated and inflated as necessary.

#### Valve Remote (VR)

The GLWA Wastewater conveyance system has 17 Valve Remote (VR) gate locations. At these locations, one or more gates are used to selectively load the interceptors, provide in-system storage and route the flow. These gates are operated locally and remotely from the SCC during wet weather periods. During dry weather, remotely controlled gates are opened to direct flow to the interceptors, and during wet weather they are typically closed when the flow in the interceptors reach predetermined levels.

Some are operated by electric operators, but the majority of them are operated by hydraulic units (SCUBA). Most of these gates were installed in the 1970s and rehabilitated in 1998 under PC-695. Average life expectancy is 20 to 35 years. An example of a valve remote location is shown in Figure VI-66.

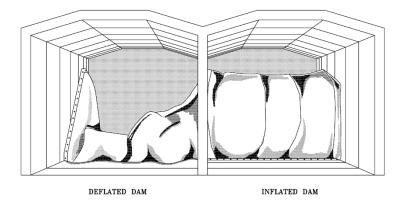



Figure VI-65. Inflatable dam illustration

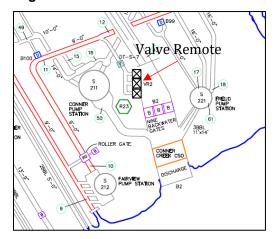



Figure VI-66. Example of VR located at Conner Pump Station

#### **Precipitation Gage**

A precipitation gauge (PG, see Figure VI-67) measures the amount of liquid precipitation over a set time period. Ovation, the Authority's Supervisory Control and Data Acquisition system, reports the precipitation data to aid the operation of the collection system and minimize combined sewer overflows during storm events. Thirty-three tipping bucket rain gages are installed throughout the service area.

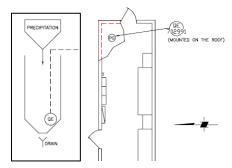



Figure VI-67. Example of Precipitation Gauge mounted on roof at Schoolcraft Pump Station

#### 2.4. Metering

The System Analytics and Meter Operations Group is responsible for maintenance and operation of numerous remote assets used in the metering of wastewater, as well as the communication network used to transmit data from the metering locations to the head end.

The System Analytics and Meter Operations Group maintains assets at 46 sewer meter locations. Each of these locations contain equipment that is located in a control cabinet, as well as assets that are located in meter vaults. The assets that are housed in the control cabinet include Remote Terminal Units, radios, flow transmitters and level transmitters. The assets that are housed in the meter vault include flow meters and level sensors.

In addition to metering equipment, the System Analytics and Meter Operations Group maintains a 900MHz telemetry network and a Greater Detroit regional sewer system (GDRSS). The 900 MHz telemetry network is composed of 445 repeater sites. Each repeater location consists of radios and antennas. The GDRSS system collects flow and depth information from GLWA sewerage meters in five-minute increments and from rain gauges in 15-minute increments. The GDRSS portal provides a web-based interface that displays meter data (collected the day before) in both graphical and tabular formats in increments of five minute, hourly, daily, monthly, and yearly intervals. Data can be exported for off-line examination. Billing reports can be reviewed for member partner analysis, as well as precipitation data.

#### 2.4.1. General Purpose

Refer to the General Purpose description on page II-6.

#### 2.5. General Purpose

Refer to the General Purpose description on page II-6.

#### 2.6. Programs

Refer to the Programs description on page II-6.

### SECTION 3 CENTRALIZED SERVICES

All financial figures are in thousands of dollars (\$1,000's). The Budget column denotes whether this item is funded by the Water (W) or Wastewater (S) budget. The Project Status column shows which projects are Active (A), Future Planned (FP), or Pending Closeout (PC). Projects that have been Reclassified to a different number, Closed, or Cancelled are not shown in this list; a list of Closed projects can be found in Chapter IV. Projects new to the CIP this year are denoted by bolded CIP number and title.

**Table VI-22. Centralized Services Projects** 

| CIP#   | Title                                                | Budget | Project<br>Status | ar Added | fetime<br>ual Thru<br>7 2019 | 7 2020 | Y 2021 | Projec<br>27<br>20<br>20<br>20 | ted Ex | pendit<br>707<br>702 | ures<br>2022 | 2026<br>eyond | 21-2025<br>P Total | roject Total | rcent of /S CIP |
|--------|------------------------------------------------------|--------|-------------------|----------|------------------------------|--------|--------|--------------------------------|--------|----------------------|--------------|---------------|--------------------|--------------|-----------------|
|        |                                                      |        |                   | Yea      | Act                          | 2      | FY ?   | FY                             | FY?    | FY?                  | FY ?         | FY Z          | 20.Z<br>CI         | Proj         | Pel             |
| 351001 | LED Lighting and Lighting Control Improvements       | W      | A                 | 2017     | 6                            | 0      | 50     | 248                            | 252    | 0                    | 0            | 0             | 550                | 556          | 0.06%           |
| 380600 | As-Needed General Engineering Services               | W      | A                 | 2004     | 56                           | 0      | 0      | 0                              | 0      | 0                    | 0            | 0             | 0                  | 56           | 0.00%           |
| 381000 | Power Quality: Electric Metering Improvement Program | W      | FP                | 2016     | 0                            | 0      | 0      | 0                              | 0      | 86                   | 445          | 2,904         | 531                | 3,435        | 0.06%           |
| 380600 | As-Needed General Engineering Services               | S      | Α                 | 2004     | -51                          | 0      | 0      | 0                              | 0      | 0                    | 0            | 0             | 0                  | -51          | 0.00%           |
| 381000 | Power Quality: Electric Metering Improvement Program | S      | FP                | 2016     | 0                            | 86     | 446    | 1,540                          | 1,337  | 26                   | 0            | 0             | 3,349              | 3,435        | 0.45%           |
|        | Water Centralized Services                           |        |                   |          | 62                           | 0      | 50     | 248                            | 252    | 86                   | 445          | 2,904         | 1,081              | 4,047        | 0.12%           |
|        | Wastewater Centralized Services                      |        |                   |          | -51                          | 86     | 446    | 1,540                          | 1,337  | 26                   | 0            | 0             | 3,349              | 3,384        | 0.45%           |
|        | Total Centralized Services                           |        |                   |          | 11                           | 86     | 496    | 1,788                          | 1,589  | 112                  | 445          | 2,904         | 4,430              | 7,431        |                 |

#### 3.1. Information Technology

Information Technology (IT) at GLWA provides centralized technology implementation, support and services across all business functions. This includes infrastructure and cloud technologies, software and applications, desktop and computing hardware, System security, portfolio and project management services, technology forecasting and budgeting management, as

well as print services and document management. The goal of the IT team is to provide reliable and forward-thinking technologies that meet the needs today, and in the future, of GLWA's various business groups, enabling them to realize their goals and make processes more effective and efficient.

#### 3.1.1. General Purpose

Refer to the General Purpose description on page II-6.

#### 3.1.2. Service Delivery

The Service Delivery Group provides core technology support services, including troubleshooting, desktop and laptop configuration, software installation, mobile device management, smart boards, and printers/scanners. This group also provides physical document management services, in additional to full print shop services. Projects in this area include workstation computing replacements and upgrades, software and system replacements and purchases, mobile computing technologies, printers, scanners and other all in ones devices.

#### 3.1.3. Infrastructure

The Infrastructure Group provides administration and continuous monitoring of the GLWA business network, Internet services, data center, storage, and servers. It maintains Intermediate Distribution Facilities (IDF) and Main Distribution Facilities (MDF) across more than 40 facilities spanning the region. It also provides telephony services and all wireless internet access points. Projects that fall within this group work to improve network and telecommunications infrastructure, server hardware and systems, storage devices and related hardware, enterprise Active Directory and Office 365 infrastructure and licensing.

#### 3.1.4. Enterprise Applications

The Enterprise Applications Group monitors and manages applications that are used by the entire organization and may be public and/or forward facing, web-based and cross-functional. These include the Geographic Information System (GIS), public website, internal (Intranet) Sharepoint site, enterprise content management systems, business intelligence, reporting analytics (KPIs), and Legistar. Projects in this group include system replacements and/or upgrades, and new application implementations.

#### 3.1.5. Business Applications

The Business Applications Group monitors and manages line of business applications, including database administration, for Oracle WAM (Asset Management), ServiceLink, BS&A Financials, Ceridian DayForce, LIMS/PIMS, and many other specialized software packages designed to help individual business groups improve data management and daily operations. Projects in this group include system replacements and/or upgrades, and new application implementations.

#### 3.1.6. Security

The Enterprise Technology Security Group provides secure infrastructure support, administration, monitoring and training for network and computing security across the Authority. It participates in and supports Homeland Security initiatives and exercises, and participates in other desktop security efforts to ensure breaches are monitored, repelled and remediated on a continuous basis. Projects in this area provide additional security features, penetration testing, disaster recovery planning and implementation, and security training.

#### 3.1.7. Project Management Office

The Program Management Office provides various administrative and strategic functions, including overall portfolio and project management, budgeting and forecasting, policy development and strategic planning, and shared services administration. Projects that fall within this group will strengthen the overall management of technology implementations at GLWA, including but not limited to project management software and systems, process and workflow development, analysis, and strategic planning.

#### 3.2. Fleet

The Fleet Group is responsible for efficiently and effectively maintaining all GLWA Fleet and Fleet-related equipment.

The Fleet Group provides the vehicles and proper equipment for GLWA staff to accomplish their required work. The vehicles and

equipment acquisition, disposal, record management, inventory and maintenance are accomplished through coordination with the DWSD Garage. All vehicles must be kept in a safe and proper manner in order to provide GLWA staff with reliable equipment to accomplish their work.

#### 3.2.1. General Purpose

Refer to the General Purpose description on page II-6.

#### 3.3. Facilities

The Facilities Group is responsible for efficiently and effectively maintaining all GLWA facilities and structures.

The facilities house the operations of GLWA and must remain clean, secure, environmentally safe and attractive. All systems must operate in a proper and acceptable manner in order to provide a clean and safe working environment for staff, visitors and member partners. The group's objectives are accomplished by maintenance mechanics with specific skills in various trades, team leaders, administrative staff, and a manager.

#### 3.3.1. General Purpose

Refer to the General Purpose description on page II-6.

#### 3.4. Security

The Water and Wastewater Systems are vulnerable to a variety of security breaches and attacks. If these breaches/attacks were realized, the result could be large numbers of illnesses or casualties and/or a denial of service that would also affect public health and economic vitality. Critical services such as firefighting and healthcare (hospitals), and other dependent and interdependent sectors, would suffer negative consequences from a denial of service from the Water and Wastewater Systems. GLWA's critical security systems, both physical and electronic, require continual upgrade and replacement to minimize the everpresent threats to GLWA staff and infrastructure.

#### 3.4.1. General Purpose

#### 3.5. Energy Management

The Energy Management Team has been very active in pursuing new solutions for GLWA to improve operational efficiency with new concepts and technologies to achieve sustainability. Much of the team's current work revolves around auditing existing facilities, evaluating equipment, studying various processes and developing an overall understanding of the Authority's energy consumption. Many of these initial studies, pilot projects, and evaluations will directly result in future capital investments. To ensure long-term sustainability, the Energy Management Team is in the process of developing a Strategic Energy Plan that will detail the challenges facing GLWA, establish goals and identify the methodology for measuring success.

The Energy Management Group continues to work alongside GLWA's Business Intelligence staff to collect and compile energy consumption data. The effort is evolving from the original concept of monitoring pumps' electric consumption to a broader vision of modeling the entire set of business activities that bring value to our member partner communities. As this specifically relates to energy management, it is anticipated that consumption data will be compiled across multiple business areas to enable the cross-referencing between business areas by using a single data warehouse. This allows for flexibility in data mining, dashboard construction and process tracking. The results of many of these initiatives will allow the team to identify specific, prioritized areas within the Authority for future capital investment to improve efficiency.

#### 3.5.1. General Purpose

Refer to the General Purpose description on page II-6.

### 3.6. Engineering

Overall engineering services required because of emergencies, immediate investigations, evaluations, and support to ensure continued operation and the highest level of service will typically be charged against projects and programs within this category. In addition, the engineering work performed will directly result in capital projects. Several categories exist that are typically needed in this manner. These categories are general engineering services, geotechnical services and CIP implementation services.

#### 3.6.1. General Purpose

Refer to the General Purpose description on page II-6.

#### 3.7. General Purpose

Refer to the General Purpose description on page II-6.

#### 3.8. Programs

Refer to the Programs description on page II-6.



New to the 2021-2025 CIP are longer-turn outlooks related to projects and programs that are anticipated within the water and wastewater systems. These 10-year outlooks rely heavily on input from long-term needs assessments, master plans and condition assessment documents. The planning horizon for these outlooks extend from FY2021 through FY2030. Projects within the 2021-2025 CIP that carry over into the FY2026+ are now shown within the following tables by the anticipated fiscal year in which projected expenditures are anticipated.

Only project level data will be provided within these outlooks. These are subject to change and are based upon the best available data at the time of compiling this report.

#### **10-YEAR WATER OUTLOOK** SECTION 1

The primary source of longer-term projects used for the 10-Year Water Outlook are from the 2015 Water Master Plan. In addition, it is anticipated that most programs will continue into the 10-year horizon. The project level data can be seen in Table VII-1.

The specific Water 10-Year Outlook projects is summarized in Table VII-2. Due to the higher likelihood of unknown projects, programs and overall needs within this 10-Year Outlook, in the later years FY2028-FY2030, a line item titled, "Not Yet Specified Projects" has been included.

In addition, a graphical representation of this summary is shown in Figure VII-1.

Table VII-1. Water 10-Year Outlook Projects; All figures are in \$1,000's

| CIP#   |   | Title                                                                                                                   | FY<br>2020 | FY<br>2021 | FY<br>2022 | FY<br>2023 | FY<br>2024 | FY<br>2025 | FY<br>2026 | FY<br>2027 | FY<br>2028 | FY<br>2029 | FY<br>2030 | 2021-<br>2025<br>Total | 2026 -<br>2030<br>Total | TOTAL<br>2021-2030 |
|--------|---|-------------------------------------------------------------------------------------------------------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------------------|-------------------------|--------------------|
| 111001 | W | Lake Huron Water Treatment Plant, Low-Lift,<br>High Lift and Filter Backwash Pumping System<br>Improvements             | 1,236      | 1,636      | 1,749      | 13,725     | 12,768     | 12,841     | 11,015     | 106        | 0          | 0          | 0          | 42,718                 | 11,121                  | 53,840             |
| 111002 | W | Lake Huron Water Treatment Plant,<br>Miscellaneous Mechanical HVAC Improvements                                         | 1,972      | 41         | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 41                     | 0                       | 41                 |
| 111004 | W | Lake Huron Water Treatment Plant, Electrical<br>Tunnel Rehabilitation                                                   | 1,371      | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0                      | 0                       | 0                  |
| 111006 | W | Lake Huron Water Treatment Plant, Filter<br>Instrumentation and Raw Water Flow Metering<br>Improvements                 | 236        | 236        | 236        | 2,330      | 6,184      | 6,628      | 0          | 0          | 0          | 0          | 0          | 15,613                 | 0                       | 15,613             |
| 111007 | W | Lake Huron Water Treatment Plant, Raw Sludge<br>Clarifier and Raw Sludge Pumping System<br>Improvements                 | 4,896      | 3,392      | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 3,392                  | 0                       | 3,392              |
| 111008 | W | Lake Huron Water Treatment Plant, Architectural<br>Programming for Laboratory and Admin Building<br>Improvements        |            | 0          | 0          | 0          | 0          | 0          | 103        | 284        | 498        | 414        | 0          | 0                      | 1,299                   | 1,299              |
| 111009 | W | Lake Huron Water Treatment Plant - High Lift<br>Pumping, Water Production Flow Metering and<br>Yard Piping Improvements | 547        | 1,856      | 3,554      | 8,991      | 10,561     | 3,686      | 0          | 0          | 0          | 0          | 0          | 28,649                 | 0                       | 28,649             |
| 111010 | W | Lake Huron Water Treatment Plant -Filtration and Pretreatment Improvements                                              | 0          | 0          | 0          | 0          | 12         | 48         | 65         | 65         | 79         | 79         | 5,286      | 60                     | 5,572                   | 5,633              |



I OVERVIEV

II CIP DEVELOPMENT + PROCESS

III FINANCE

IV CIP SUMMARY

V PRIORITIZATION

VI PROJECTS BY CATEGORY VII TEN-YEAR OUTLOOK VIII PROJECT DESCRIPTIONS

| CIP#   | Bud-<br>get | Title                                                                                                                      | FY<br>2020 | FY<br>2021 | FY<br>2022 | FY<br>2023 | FY<br>2024 | FY<br>2025 | FY<br>2026 | FY<br>2027 | FY<br>2028 | FY<br>2029 | FY<br>2030 | 2021-<br>2025<br>Total | 2026 -<br>2030<br>Total | TOTAL<br>2021-2030 |
|--------|-------------|----------------------------------------------------------------------------------------------------------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------------------|-------------------------|--------------------|
| 111011 | W           | Lake Huron WTP Pilot Plant                                                                                                 | 0          | 0          | 0          | 0          | 0          | 0          | 44         | 660        | 1,086      | 4          | 0          | 0                      | 1,794                   | 1,794              |
| 112002 | W           | Northeast Water Treatment Plant, Low-Lift<br>Pumping Plant Caisson Rehabilitation                                          | 210        | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0                      | 0                       | 0                  |
| 112003 | W           | Northeast Water Treatment Plant High-Lift<br>Pumping Station Improvements                                                  | 0          | 0          | 0          | 40         | 1,228      | 2,383      | 1,334      | 8,817      | 12,455     | 15,336     | 15,972     | 3,651                  | 53,915                  | 57,566             |
| 112005 | W           | Northeast Water Treatment Plant - Replacement of Covers for Process Water Conduits                                         | 268        | 1,097      | 14         | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 1,111                  | 0                       | 1,111              |
| 112006 | W           | Northeast Water Treatment Plant Flocculator<br>Replacements                                                                | 460        | 2,773      | 3,026      | 849        | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 6,649                  | 0                       | 6,649              |
| 113002 | W           | Southwest Water Treatment Plant, High-Lift<br>Pump Discharge Valve Actuators Replacement                                   | 2,313      | 1,094      | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 1,094                  | 0                       | 1,094              |
| 113003 | W           | Southwest Water Treatment Plant, Low- and<br>High-Lift Pumping Station, Flocculation and<br>Filtration System Improvements | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 7,157      | 7,157      | 0                      | 14,314                  | 14,314             |
| 113004 | W           | Southwest Water Treatment Plant, Raw Water<br>Sampling Modifications                                                       | 35         | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0                      | 0                       | 0                  |
| 113006 | W           | Southwest Water Treatment Plant Chlorine<br>Scrubber, Raw Water Screens & Related<br>Improvements                          | 0          | 260        | 2,238      | 2,238      | 17         | 0          | 0          | 0          | 0          | 0          | 0          | 4,754                  | 0                       | 4,754              |
| 113007 | W           | Southwest Water Treatment Plant Architectural and Building Mechanical Improvements                                         | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 12         | 86         | 0                      | 98                      | 98                 |
| 114001 | W           | Springwells Water Treatment Plant, 1958 Filter<br>Rehabilitation and Auxiliary Facilities<br>Improvements                  | 5,794      | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0                      | 0                       | 0                  |
| 114002 | W           | Springwells Water Treatment Plant, Low-Lift and High-Lift Pumping Station Improvements                                     | 3,039      | 7,113      | 12,893     | 18,906     | 18,690     | 19,176     | 18,902     | 18,738     | 18,551     | 18,374     | 18,374     | 76,778                 | 92,940                  | 169,718            |
| 114003 | W           | Water Production Flow Metering Improvements at Northeast, Southwest and Springwells Water Treatment Plants                 | 2,149      | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0                      | 0                       | 0                  |
| 114005 | W           | Springwells Water Treatment Plant,<br>Administration Building Improvements &<br>Underground Fire Protection Loop           | 417        | 2,302      | 4,199      | 1,515      | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 8,016                  | 0                       | 8,016              |
| 114006 | W           | Springwells Water Treatment Plant Replacement of 1958 Rapid Mixing Units                                                   | 14         | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0                      | 0                       | 0                  |
| 114007 | W           | Springwells Water Treatment Plant Powdered<br>Activated Carbon System Improvements                                         | 0          | 0          | 0          | 0          | 0          | 63         | 329        | 1,109      | 2,682      | 6          | 0          | 63                     | 4,125                   | 4,188              |
| 114008 | W           | Springwells Water Treatment Plant 1930<br>Sedimentation Basin Sluice Gates, Guides &<br>Hoists Improvements                | 3,385      | 10,327     | 331        | 19         | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 10,677                 | 0                       | 10,677             |
| 114010 | W           | Springwells Water Treatment Plant, Yard Piping and High-Lift Header Improvements                                           | 0          | 1          | 46         | 608        | 9,409      | 11,958     | 14,588     | 17,747     | 19,175     | 19,758     | 19,320     | 22,022                 | 90,587                  | 112,609            |
| 114011 | W           | Springwells Water Treatment Plant Steam,<br>Condensate Return, and Compressed Air Piping<br>Improvements                   | 6,948      | 6,933      | 6,933      | 713        | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 14,580                 | 0                       | 14,580             |



II CIP DEVELOPMENT

+ PROCESS

III FINANCE

IV CIP SUMMARY

**V** PRIORITIZATION

VI PROJECTS BY CATEGORY VII TEN-YEAR

VIII PROJECT DESCRIPTIONS

| CIP#   | Bud-<br>get | Title                                                                                                              | FY<br>2020 | FY<br>2021 | FY<br>2022 | FY<br>2023 | FY<br>2024 | FY<br>2025 | FY<br>2026 | FY<br>2027 | FY<br>2028 | FY<br>2029 | FY<br>2030 | 2021-<br>2025<br>Total | 2026 -<br>2030<br>Total | TOTAL<br>2021-2030 |
|--------|-------------|--------------------------------------------------------------------------------------------------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------------------|-------------------------|--------------------|
| 114013 | W           | Springwells Water Treatment Plant, Reservoir Fill Line Improvements                                                | 1,990      | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0                      | 0                       | 0                  |
| 114016 | W           | Springwells Water Treatment Plant 1958 Settled<br>Water Conduits and Loading Dock Concrete<br>Pavement Replacement | 94         | 1,663      | 7          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 1,671                  | 0                       | 1,671              |
| 114017 | W           | Springwells Water Treatment Plant Flocculator<br>Drive Replacements                                                | 29         | 314        | 635        | 2,265      | 6,035      | 17         | 0          | 0          | 0          | 0          | 0          | 9,267                  | 0                       | 9,267              |
| 114018 | W           | Springwells Water Treatment Plant - Service<br>Building Electrical Substation and Miscellaneous<br>Improvements    | 0          | 0          | 90         | 1,378      | 40         | 0          | 0          | 0          | 0          | 0          | 0          | 1,508                  | 0                       | 1,508              |
| 115001 | W           | Water Works Park Water Treatment Plant Yard<br>Piping, Valves and Venturi Meters Replacement                       | 251        | 5,462      | 13,348     | 21,477     | 20,883     | 8,837      | 0          | 0          | 0          | 0          | 0          | 70,007                 | 0                       | 70,007             |
| 115003 | W           | Water Works Park Water Treatment Plant<br>Comprehensive Condition Assessment                                       | 68         | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0                      | 0                       | 0                  |
| 115004 | W           | Water Works Park Water Treatment Plant<br>Chlorine System Upgrade                                                  | 754        | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0                      | 0                       | 0                  |
| 115005 | W           | WWP WTP Building Ventilation Improvements                                                                          | 1,614      | 1,999      | 3,610      | 2,540      | 378        | 0          | 0          | 0          | 0          | 0          | 0          | 8,527                  | 0                       | 8,527              |
| 115006 | W           | Water Works Park Site/Civil Improvements                                                                           | 0          | 0          | 0          | 0          | 0          | 0          | 467        | 500        | 3,737      | 939        | 0          | 0                      | 5,642                   | 5,642              |
| 116002 | W           | Pennsylvania and Springwells Raw Water Supply<br>Tunnel Improvements                                               | 653        | 14,138     | 21,916     | 8,810      | 5,527      | 0          | 0          | 0          | 0          | 0          | 0          | 50,391                 | 0                       | 50,391             |
| 122002 | W           | Replacement of Five (5) PRV Pits of Treated Water Transmission System                                              | 5          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0                      | 0                       | 0                  |
| 122003 | W           | Water Works Park to Northeast Transmission<br>Main                                                                 | 1,169      | 11,703     | 18,406     | 18,678     | 18,169     | 20,839     | 21,940     | 20,774     | 17,636     | 5,600      | 0          | 87,795                 | 65,950                  | 153,745            |
| 122004 | W           | 96-inch Water Transmission Main Relocation and Isolation Valve Installations                                       | 2,550      | 5,267      | 15,765     | 19,937     | 19,797     | 19,797     | 19,376     | 18,815     | 18,815     | 2,946      | 17         | 80,563                 | 59,969                  | 140,532            |
| 122005 | W           | Schoolcraft Road Water Transmission Main                                                                           | 3,342      | 13,141     | 1,482      | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 14,624                 | 0                       | 14,624             |
| 122006 | W           | Wick Road Water Transmission Main                                                                                  | 6,163      | 9,975      | 5,779      | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 15,754                 | 0                       | 15,754             |
| 122007 | W           | Merriman Road Water Transmission Main Loop                                                                         | 0          | 0          | 0          | 15         | 390        | 1,298      | 372        | 2,235      | 4,931      | 7,214      | 5,004      | 1,703                  | 19,755                  | 21,458             |
| 122011 | W           | Park-Merriman Road Water Transmission Main                                                                         |            | 2,164      | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 2,164                  | 0                       | 2,164              |
| 122013 | W           | 14 Mile Transmission Main Loop                                                                                     | 3,762      |            | 17,085     |            | -          | 17,085     | 7          | 0          | 0          | 0          | 0          | 69,533                 | 7                       | 69,540             |
| 122016 | W           | Downriver Transmission Main Loop                                                                                   | 1,398      | 1,748      | 3,793      | 7,985      | 8,006      | 7,985      | 6,796      | 10         | 0          | 0          | 0          | 29,517                 | 6,806                   | 36,323             |
| 122017 | W           | 7 Mile/Nevada Transmission Main Rehab and Carrie/Nevada Flow Control Station                                       | 74         | 1,794      | 3,510      | 9,223      | 7,620      | 7,572      | 7,408      | 7,408      | 7,428      | 5,326      | 3,215      | 29,718                 | 30,784                  | 60,502             |
| 122018 | W           | Garland, Hurlbut, Bewick Water Transmission<br>System Rehabilitation                                               | 121        | 1,718      | 2,037      | 2,690      | 4,006      | 4,005      | 11,199     | 11,199     | 7,522      | 80         | 0          | 14,456                 | 30,000                  | 44,455             |
| 132003 | W           | West Service Center Pumping Station, Isolation<br>Gate Valves for Line Pumps                                       | 1,666      | 65         | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 65                     | 0                       | 65                 |
| 132006 | W           | Ford Road Pumping Station, Pressure and Control Improvements                                                       | 1,036      | 987        | 960        | 8          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 1,955                  | 0                       | 1,955              |
| 132007 | W           | Energy Management: Freeze Protection Pump<br>Installation at Imlay Pump Station                                    | 685        | 4,212      | 206        | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 4,417                  | 0                       | 4,417              |
| 132010 | W           | West Service Center Pumping Station - Reservoir,<br>Reservoir Pumping, and Division Valve Upgrades                 | 663        | 4,323      | 12,209     | 11,854     | 8,361      | 0          | 0          | 0          | 0          | 0          | 0          | 36,746                 | 0                       | 36,746             |
| 132012 | W           | Ypsilanti Booster Pumping Station Improvements                                                                     | 712        | 846        | 846        | 3,827      | 9,721      | 11,936     | 3,708      | 0          | 0          | 0          | 0          | 27,176                 | 3,708                   | 30,884             |



I OVERVIEW

/

II CIP DEVELOPMENT + PROCESS

III FINANCE

IV CIP SUMMARY

**V** PRIORITIZATION

VI PROJECTS BY CATEGORY VII TEN-YEAR OUTLOOK VIII PROJECT DESCRIPTIONS

| CIP#   | Bud-<br>get | Title                                                                                                                                              | FY<br>2020 | FY<br>2021 | FY<br>2022 | FY<br>2023 | FY<br>2024 | FY<br>2025 | FY<br>2026 | FY<br>2027 | FY<br>2028 | FY<br>2029 | FY<br>2030 | 2021-<br>2025<br>Total | 2026 -<br>2030<br>Total | TOTAL<br>2021-2030 |
|--------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------------------|-------------------------|--------------------|
| 132014 | W           | Adams Road Pumping Station Improvements                                                                                                            | 0          | 0          | 0          | 13         | 205        | 926        | 926        | 125        | 3,789      | 8,674      | 12,880     | 1,144                  | 26,393                  | 27,537             |
| 132015 | W           | Newburgh Road Booster Pumping Station<br>Improvements                                                                                              | 581        | 973        | 1,596      | 5,216      | 6,287      | 9,133      | 6,891      | 0          | 0          | 0          | 0          | 23,204                 | 6,891                   | 30,094             |
| 132016 | W           | North Service Center Pumping Station<br>Improvements                                                                                               | 0          | 0          | 21         | 279        | 2,385      | 1,832      | 4,723      | 9,019      | 9,044      | 9,019      | 9,019      | 4,518                  | 40,825                  | 45,343             |
| 132019 | W           | Wick Road Pumping Station Improvements                                                                                                             | 0          | 0          | 0          | 0          | 0          | 15         | 59         | 569        | 572        | 571        | 1,154      | 15                     | 2,925                   | 2,940              |
| 132020 | W           | Franklin Pumping Station Improvements                                                                                                              | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 50         | 239        | 1,380      | 774        | 0                      | 2,442                   | 2,442              |
| 132021 | W           | Imlay Pumping Station Improvements                                                                                                                 | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 13         | 0                      | 13                      | 13                 |
| 132022 | W           | Joy Road Pumping Station Improvements                                                                                                              | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 48         | 0                      | 48                      | 48                 |
| 132026 | W           | Franklin Pumping Station Valve Replacement                                                                                                         | 449        | 613        | 349        | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 962                    | 0                       | 962                |
| 170100 | W           | Water Treatment Plant / Pump Station Allowance                                                                                                     | 1,812      | 1,499      | 1,359      | 1,359      | 1,363      | 1,359      | 13,753     | 37,912     | 0          | 0          | 0          | 6,938                  | 51,665                  | 58,604             |
| 170200 | W           | As-Needed Construction Materials,<br>Environmental Media and Special Testing<br>Services, Construction Inspection, and Other<br>Technical Services | 1,057      | 685        | 9          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 694                    | 0                       | 694                |
| 170300 | W           | Water Treatment Plant Automation Program                                                                                                           | 3,208      | 5,440      | 2,943      | 1,211      | 3,116      | 1,152      | 0          | 0          | 0          | 0          | 0          | 13,862                 | 0                       | 13,862             |
| 170400 | W           | Water Transmission Improvement Program                                                                                                             | 1,781      | 1,776      | 1,776      | 1,776      | 1,781      | 1,046      | 0          | 0          | 26         | 5,613      | 10,939     | 8,154                  | 16,578                  | 24,732             |
| 170500 | W           | Transmission System Valve Rehabilitation and Replacement Program                                                                                   | 642        | 1,177      | 3,118      | 3,175      | 3,209      | 3,202      | 2,179      | 0          | 333        | 1,108      | 1,163      | 13,882                 | 4,783                   | 18,666             |
| 170600 | W           | Water Transmission Main Asset Assessment<br>Program                                                                                                | 54         | 54         | 54         | 775        | 2,183      | 4,183      | 6,372      | 6,399      | 3,073      | 4,541      | 3,065      | 7,249                  | 23,451                  | 30,699             |
| 170800 | W           | System-Wide Finished Water Reservoir<br>Inspection, Design and Rehabilitation                                                                      | 2,160      | 6,087      | 6,087      | 6,087      | 4,100      | 11,366     | 11,366     | 11,366     | 0          | 0          | 0          | 33,728                 | 22,732                  | 56,460             |
| 170900 | W           | Suburban Water Meter Pit Rehabilitation and<br>Meter Replacement                                                                                   | 2,542      | 2,535      | 2,535      | 1,139      | 121        | 120        | 71         | 0          | 0          | 0          | 0          | 6,451                  | 71                      | 6,522              |
| 171500 | W           | Roof Replacement at WWP, SP, LH, NE, SW, NSC,<br>Orion, Franklin, and Conner Creek Facilities                                                      | 2,826      | 173        | 317        | 2,906      | 3,126      | 2,255      | 2,221      | 242        | 546        | 4,493      | 4,493      | 8,776                  | 11,996                  | 20,773             |
| 341001 | W           | Security Infrastructure Improvements on Water Facilities                                                                                           | 4,029      | 4,018      | 2,603      | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 6,621                  | 0                       | 6,621              |
| 351001 | W           | LED Lighting and Lighting Control Improvements                                                                                                     | 0          | 50         | 248        | 252        | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 550                    | 0                       | 550                |
| 380700 | W           | As-Needed Geotechnical and Related Engineering Services                                                                                            | 1,415      | 715        | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 715                    | 0                       | 715                |
| 381000 | W           | Power Quality: Electric Metering Improvement<br>Program                                                                                            | 0          | 0          | 0          | 0          | 86         | 445        | 1,540      | 1,337      | 28         | 0          | 0          | 531                    | 2,904                   | 3,435              |
|        |             | Totals                                                                                                                                             | 91,118     | 147,567    | 179,920    | 201,894    | 212,849    | 193,187    | 167,750    | 175,485    | 132,246    | 118,642    | 117,979    | 935,417                | 712,103                 | 1,647,520          |

**V** PRIORITIZATION

#### Table VII-2. 10-Year Water CIP Outlook Summary.

#### 10-Year Water CIP Outlook

Note: Figures below are in thousands of dollars

|                         |         |         |         |         |         |         |         |         |         |         |         | Total 2020- |
|-------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|-------------|
| 2020 Outlook            | FY2020  | FY2021  | FY2022  | FY2023  | FY2024  | FY 2025 | FY 2026 | FY 2027 | FY 2028 | FY 2029 | FY 2030 | 2029        |
| Projects                | 117,829 | 142,981 | 158,855 | 195,811 | 164,373 | 140,250 | 133,489 | 73,450  | 68,604  | 72,152  | NA      | 1,267,795   |
| Programs                | 25,418  | 23,618  | 23,740  | 24,195  | 26,493  | 42,875  | 42,875  | 42,875  | 42,875  | 41,681  | NA      | 336,643     |
| Not Yet Specified       |         |         |         |         |         |         |         |         |         |         |         |             |
| Projects                |         |         |         |         |         |         |         | 60,000  | 70,000  | 70,000  | NA      | 200,000     |
| Subtotal 2020 Water CIP | 143,247 | 166,599 | 182,595 | 169,006 | 190,866 | 183,125 | 176,364 | 176,325 | 181,478 | 183,833 | NA      | 1,804,438   |
|                         |         |         |         |         |         |         |         |         |         |         |         |             |
|                         |         |         |         |         |         |         |         |         |         |         |         | Total 2021- |
| Proposed 2021 Outlook   | FY2020  | FY2021  | FY2022  | FY2023  | FY2024  | FY 2025 | FY 2026 | FY 2027 | FY 2028 | FY 2029 | FY2030  | 2030        |
| Projects                | NA      | 127,426 | 161,722 | 183,465 | 193,765 | 168,059 | 130,249 | 118,228 | 128,240 | 102,887 | 98,319  | 1,412,360   |
| Programs                | -       | 20,141  | 18,198  | 18,429  | 19,084  | 25,128  | 37,502  | 57,256  | 4,007   | 15,756  | 19,660  | 235,160     |
| Not Yet Specified       |         |         |         |         |         |         |         |         |         |         |         |             |
| Projects                | NA      |         |         |         |         |         |         |         | 30,000  | 20,000  | 19,348  | 69,348      |
| Subtotal 2021 Water CIP | NA      | 147,567 | 179,920 | 201,894 | 212,849 | 193,187 | 167,750 | 175,485 | 162,246 | 138,642 | 137,327 | 1,716,868   |

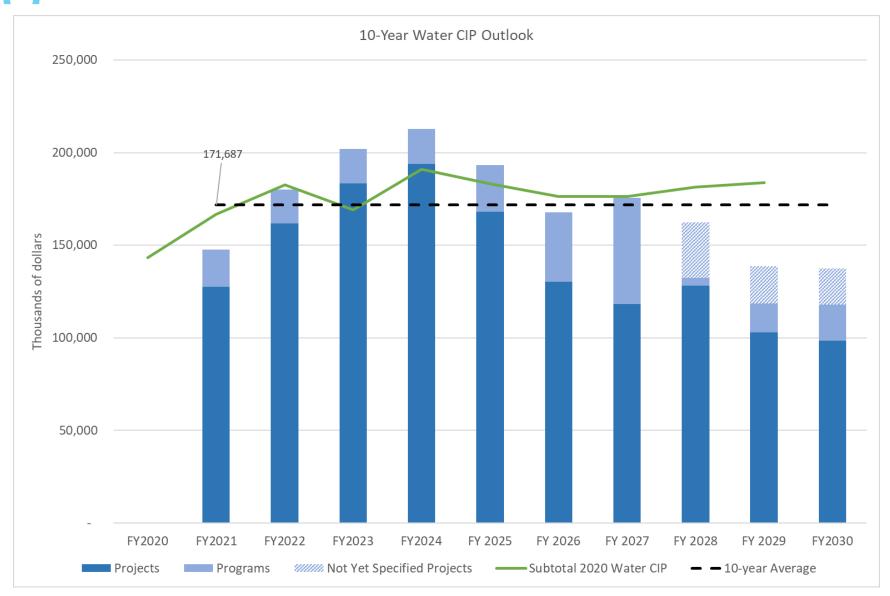



Figure VII-1. 10-Year Water CIP Outlook Chart

I OVERVIEW

#### SECTION 2 10-YEAR WASTEWATER OUTLOOK

The primary source of long-term projects used for the 10-Year Wastewater Outlook are from the 2015 Wastewater Needs Assessment and various condition assessment that have been performed. Unlike the water system, the Comprehensive Regional Wastewater Master Plan is currently being prepared and limited data is available to include herein. It is anticipated that most programs will continue into the 10-year horizon. The project level data used in the development of this outlook can be seen in Table VII-3.

The specific Wastewater 10-Year Outlook projects can be summarized into the following table. Due to the higher likelihood of unknown projects, programs and overall needs identified within the Wastewater Master Plan within this 10-Year Outlook, in the later years FY2028-FY2030, a line item titled, "Not Yet Specified Masterplan Projects" has been included.

In addition, a graphical representation of this summary is shown in Figure VII-2.

Table VII-3. 10-Year Wastewater CIP Outlook Projects.

| CIP#   | Bud Title                                                                                                                    | FY<br>2020 | FY<br>2021 | FY<br>2022 | FY<br>2023 | FY<br>2024 | FY<br>2025 | FY<br>2026 | FY<br>2027 | FY<br>2028 | FY<br>2029 | FY<br>2030 | 2021-<br>2024<br>Total | 2026 -<br>2030<br>Total | TOTAL<br>2021-<br>2030 |
|--------|------------------------------------------------------------------------------------------------------------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------------------|-------------------------|------------------------|
| 211001 | WRRF Rehabilitation of Primary Clarifiers  S Rectangular Tanks, Drain Lines, Electrical/Mechanical Building and Pipe Gallery | 6,225      | 3,775      | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 3,775                  | 0                       | 3,775                  |
| 211002 | 2 S WRRF PS No. 2 Pumping Improvements - Phase 1                                                                             | 1,860      | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0                      | 0                       | 0                      |
| 211004 | WRRF PS #1 Rack & Grit and MPI Sampling Station 1 Improvements                                                               | 1,771      | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0                      | 0                       | 0                      |
| 211005 | 5 S WRRF PS No. 2 Improvements Phase II                                                                                      | 0          | 0          | 0          | 472        | 2,245      | 949        | 12,142     | 14,878     | 3,365      | 0          | 0          | 3,666                  | 30,384                  | 34,050                 |
| 211006 | 6 S WRRF PS No. 1 Improvements                                                                                               | 929        | 645        | 551        | 8,531      | 12,773     | 3,341      | 0          | 0          | 0          | 0          | 0          | 25,841                 | 0                       | 25,841                 |
| 211007 | 7 S WRRF PS #2 Bar Racks Replacements and Grit Collection System Improvements                                                | 256        | 3,098      | 7,547      | 2,121      | 20,899     | 34,033     | 8,643      | 0          | 0          | 0          | 0          | 67,697                 | 8,643                   | 76,340                 |
| 211008 | 8 S WRRF Rehabilitation of Ferric Chloride Feed<br>System in PS-1 and Complex B Sludge Lines                                 | 1,239      | 5,522      | 3,886      | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 9,408                  | 0                       | 9,408                  |
| 211009 | 9 S WRRF Rehabilitation of the Circular Primary<br>Clarifier Scum Removal System                                             | 21         | 313        | 1,254      | 802        | 8,716      | 2,143      | 0          | 0          | 0          | 0          | 0          | 13,228                 | 0                       | 13,228                 |
| 211010 | 0 S Rehabilitation of Sludge Processing Complexes A and B                                                                    | 0          | 0          | 0          | 0          | 177        | 748        | 640        | 7,745      | 4,452      | 275        | 0          | 926                    | 13,113                  | 14,038                 |
| 211011 | 1 S WRRF PS1 Screening and Grit Improvements                                                                                 | 0          | 0          | 0          | 0          | 0          | 14         | 6,723      | 8,849      | 4,514      | 40,248     | 40,398     | 14                     | 100,733                 | 100,747                |
| 212003 | 3 S WRRF Aeration System Improvements                                                                                        | 136        | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0                      | 0                       | 0                      |
| 212004 | WRRF Chlorination and Dechlorination Process Equipment Improvements                                                          | 3,727      | 1,850      | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 1,850                  | 0                       | 1,850                  |
| 212006 | 6 S WRRF Rouge River Outfall (RRO) Disinfection (Alternative)                                                                | 2,748      | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0                      | 0                       | 0                      |
| 212007 | 7 S WRRF Rehabilitation of the Secondary Clarifiers                                                                          | 0          | 0          | 15         | 427        | 879        | 532        | 4,904      | 16,303     | 4,998      | 2,082      | 0          | 1,852                  | 28,288                  | 30,140                 |
| 212008 | 8 S WRRF Aeration Improvements 1 and 2                                                                                       | 183        | 4,612      | 7,977      | 7,619      | 40,638     | 15,335     | 5,149      | 0          | 0          | 0          | 0          | 76,181                 | 5,149                   | 81,329                 |
| 212009 | 9 S WRRF Aeration Improvements 3 and 4                                                                                       | 0          | 0          | 0          | 0          | 0          | 14         | 4,943      | 6,499      | 3,325      | 29,382     | 29,600     | 14                     | 73,750                  | 73,764                 |
| 212010 | 0 S WRRF Conversion of Disinfection of all Flow to Sodium Hypochlorite and Sodium Bisulfite                                  | 0          | 0          | 0          | 0          | 0          | 14         | 388        | 484        | 332        | 2,376      | 2,393      | 14                     | 5,972                   | 5,986                  |
| 213006 | 6 S WRRF Improvements to Sludge Feed Pumps at Dewatering Facilities                                                          | 0          | 174        | 385        | 3,371      | 716        | 0          | 0          | 0          | 0          | 0          | 0          | 4,646                  | 0                       | 4,646                  |



II

II CIP DEVELOPMENT + PROCESS IV CIP SUMMARY

**V** PRIORITIZATION

VI PROJECTS BY CATEGORY VII TEN-YEAR OUTLOOK VIII PROJECT DESCRIPTIONS

| CIP#   | Bud<br>-get | li le                                                                                                                            | FY<br>2020 | FY<br>2021  | FY<br>2022 | FY<br>2023      | FY<br>2024   | FY<br>2025   | FY<br>2026     | FY<br>2027 | FY<br>2028 | FY<br>2029 | FY<br>2030 | 2021-<br>2024<br>Total | 2026 -<br>2030<br>Total | TOTAL<br>2021-<br>2030 |
|--------|-------------|----------------------------------------------------------------------------------------------------------------------------------|------------|-------------|------------|-----------------|--------------|--------------|----------------|------------|------------|------------|------------|------------------------|-------------------------|------------------------|
| 213007 | •           | WRRF Modification to Incinerator Sludge Feed<br>Systems at Complex -II                                                           | 8,335      | 2,257       | 0          | 0               | 0            | 0            | 0              | 0          | 0          | 0          | 0          | 2,257                  | 0                       | 2,257                  |
| 213008 | S           | WRRF Rehabilitation of the Ash Handling Systems                                                                                  | 166        | 1,338       | 636        | 11,060          | 5,341        | 0            | 0              | 0          | 0          | 0          | 0          | 18,376                 | 0                       | 18,376                 |
| 214001 | S           | WRRF Relocation of Industrial Waste Control<br>Division and Analytical Laboratory Operations                                     | 10,369     | 1,330       | 0          | 0               | 0            | 0            | 0              | 0          | 0          | 0          | 0          | 1,330                  | 0                       | 1,330                  |
| 216004 |             | Rehabilitation of Various Sampling Sites and PS#2<br>Ferric Chloride System at WRRF                                              | 3,494      | 1,301       | 121        | 0               | 0            | 0            | 0              | 0          | 0          | 0          | 0          | 1,422                  | 0                       | 1,422                  |
| 216006 |             | Assessment and Rehabilitation of WRRF yard piping and underground utilities                                                      | 271        | 4,291       | 4,754      | 4,754           | 4,767        | 5,400        | 273            | 0          | 0          | 0          | 0          | 23,966                 | 273                     | 24,239                 |
| 216007 | S           | DTE Primary Electric 3rd Feed Supply to WRRF                                                                                     | 3,061      | 1,297       | 727        | 0               | 0            | 0            | 0              | 0          | 0          | 0          | 0          | 2,024                  | 0                       | 2,024                  |
| 216008 | 3           | Rehabilitation of Screened Final Effluent (SFE) Pump Station                                                                     | 591        | 1,362       | 1,506      | 15,571          | 5,925        | 0            | 0              | 0          | 0          | 0          | 0          | 24,365                 | 0                       | 24,365                 |
| 216009 | 5           | LM Facilities Assessment and<br>Rehabilitation/Replacement                                                                       | 226        | 253         | 1,318      | 970             | 0            | 0            | 0              | 0          | 0          | 0          | 0          | 2,541                  | 0                       | 2,541                  |
| 216010 | S           | WRRF Facility Optimization                                                                                                       | 0          | 14          | 657        | 987             | 7,999        | 680          | 0              | 0          | 0          | 0          | 0          | 10,338                 | 0                       | 10,338                 |
| 222001 | S           | Oakwood District Intercommunity Relief Sewer<br>Modification at Oakwood District                                                 | 0          | 975         | 3,128      | 3,371           | 11,234       | 13,439       | 13,451         | 7,914      | 0          | 0          | 0          | 32,147                 | 21,366                  | 53,513                 |
| 222002 |             | Detroit River Interceptor (DRI) Evaluation and Rehabilitation                                                                    | 16,199     | 23,633      | 9,785      | 1,465           | 10,014       | 9,986        | 0              | 0          | 0          | 0          | 0          | 54,884                 | 0                       | 54,884                 |
| 222004 |             | Sewer System Infrastructure and Pumping Stations<br>Improvements                                                                 | 1,459      | 2,701       | 5,433      | 16,434          | 9,864        | 3,279        | 1,952          | 0          | 0          | 0          | 0          | 37,711                 | 1,952                   | 39,663                 |
| 232001 | S           | Fairview Pumping Station - Replace Four Sanitary Pumps                                                                           | 27,552     | 5,337       | 984        | 0               | 0            | 0            | 0              | 0          | 0          | 0          | 0          | 6,321                  | 0                       | 6,321                  |
| 232002 | S           | Freud & Conner Creek Pump Station<br>Improvements                                                                                | 7,363      | 6,446       | 57         | 9,899           | 23,830       | 30,803       | 36,174         | 46,903     | 54,993     | 0          | 0          | 71,035                 | 138,070                 | 209,106                |
|        |             | Condition Assessment at Blue Hill Pump Station                                                                                   | 0          | 286         | 0          | 0               | 0            | 0            | 0              | 0          | 0          | 0          | 0          | 286                    | 0                       | 286                    |
|        |             | Rouge River In-system Storage Devices                                                                                            | 0          | 0           | 32         | 86              | 3,373        | 1,984        | 401            | 3,918      | 16,574     | 16,512     | 3,917      | 5,476                  | 41,321                  | 46,797                 |
|        |             | Sewer and Interceptor Rehabilitation Program                                                                                     | 19,029     |             |            | 24,871          |              |              | 13,240         | 0          | 0          | 0          | 0          | 103,737                |                         | 116,977                |
|        |             | CSO Outfall Rehabilitation                                                                                                       | 4,802      | 11,706      |            | 11,995          |              |              | 4,197          | 0          | 0          | 0          | 0          | 52,076                 | 4,197                   | 56,273                 |
|        |             | CSO Facilities Improvement Program Pilot CSO Netting Facility                                                                    | 7,556<br>0 | 7,492<br>20 | 86         | 10,576<br>1,604 | 4,759<br>318 | 20,280       | 20,250         | 12,000     | 0          | 12,000     | 29,000     | 53,396                 | 85,250                  | 138,646                |
| 270001 | c           | Meldrum Sewer Diversion and VR-15 Improvements                                                                                   | 0          | 0           | 13         | 86              | 586          | 4,507<br>162 | 1,233<br>2,915 | 2,160      | 157        | 0          | 0          | 6,535<br>847           | 1,233<br>5,232          | 7,769<br>6,079         |
| 270003 |             | Long Term CSO Control Plan                                                                                                       | 68         | 2,796       | 2,220      | 710             | 0            | 0            | 0              | 0          | 0          | 0          | 0          | 5,726                  | 0                       | 5,726                  |
|        |             | Baby Creek Outfall Improvements Project                                                                                          | 79         | 1,251       | 907        | 0               | 0            | 0            | 0              | 0          | 0          | 0          | 0          | 2,158                  | 0                       | 2,158                  |
|        | S           | Roofing Systems Replacement at GLWA WRRF, CSO<br>Retention Treatment Basins (RTB) and Screening<br>Disinfection Facilities (SDF) | 321        | 91          | 1,745      | 1,724           | 1,707        | 1,703        | 1,649          | 2          | 0          | 0          | 0          | 6,969                  | 1,652                   | 8,621                  |
| 341002 | S           | Security Infrastructure Improvements for<br>Wastewater Facilities                                                                | 1,579      | 1,051       | 0          | 0               | 0            | 0            | 0              | 0          | 0          | 0          | 0          | 1,051                  | 0                       | 1,051                  |
| 381000 | S           | Power Quality: Electric Metering Improvement<br>Program                                                                          | 86         | 445         | 1,540      | 1,337           | 26           | 0            | 0              | 0          | 0          | 0          | 0          | 3,348                  | 0                       | 3,348                  |
|        |             | Totals                                                                                                                           | 131,703    | 110,640     | 112,758    | 140,841         | 203,259      | 171,938      | 139,267        | 127,656    | 104,711    | 102,875    | 105,308    | 739,436                | 579,817                 | 1,319,253              |



II C

# PROCESS

III FINANCE

IV CIP SUMMARY

**V** PRIORITIZATION

VI PROJECTS BY CATEGORY VII TEN-YEAR OUTLOOK VIII PROJECT IX GLOSSARY DESCRIPTIONS

#### Table VII-4. 10-Year Wastewater CIP Outlook Summary

#### 10 -Year Wastewater CIP Outlook

Note: Figures below are in thousands of dollars

|                                           |         |                      |                      |                      |                       |                        |                        |                        |                       |                       |                      | Total 2020-           |
|-------------------------------------------|---------|----------------------|----------------------|----------------------|-----------------------|------------------------|------------------------|------------------------|-----------------------|-----------------------|----------------------|-----------------------|
| FY2020 Outlook                            | FY2020  | FY2021               | FY2022               | FY2023               | FY2024                | FY 2025                | FY 2026                | FY 2027                | FY 2028               | FY 2029               | FY2030               | 2029                  |
| Projects                                  | 124,674 | 93,830               | 117,326              | 117,857              | 85,596                | 49,184                 | 50,286                 | 33,393                 | 21,000                | 16,438                | NA                   | 709,584               |
| Programs                                  | 36,806  | 38,600               | 32,851               | 41,527               | 44,563                | 34,600                 | 33,600                 | 38,600                 | 38,600                | 43,600                | NA                   | 383,347               |
| Not Yet Specified Masterplan              |         |                      |                      |                      |                       |                        |                        |                        |                       |                       |                      |                       |
| Projects                                  |         |                      |                      |                      |                       | 65,000                 | 70,000                 | 85,000                 | 100,000               | 110,000               | NA                   | 430,000               |
| Subtotal 2020 Wastewater CIP              | 161,480 | 132,430              | 150,177              | 159,384              | 130,159               | 148,784                | 153,886                | 156,993                | 159,600               | 170,038               | NA                   | 1,522,931             |
| 10-year average                           |         |                      |                      |                      |                       |                        |                        |                        |                       |                       |                      |                       |
| 10-year average                           |         |                      |                      |                      |                       |                        |                        |                        |                       |                       |                      |                       |
| 10-year average                           |         |                      |                      |                      |                       |                        |                        |                        |                       |                       |                      | Total 2021-           |
| Proposed FY2021 Outlook                   | FY2020  | FY2021               | FY2022               | FY2023               | FY2024                | FY 2025                | FY 2026                | FY 2027                | FY 2028               | FY 2029               | FY2030               | Total 2021-<br>2030   |
| , ,                                       | FY2020  | <b>FY2021</b> 78,021 | <b>FY2022</b> 55,725 | <b>FY2023</b> 92,062 | <b>FY2024</b> 172,003 | <b>FY 2025</b> 129,068 | <b>FY 2026</b> 101,580 | <b>FY 2027</b> 115,656 | <b>FY 2028</b> 92,711 | <b>FY 2029</b> 90,875 | <b>FY2030</b> 76,308 |                       |
| Proposed FY2021 Outlook                   | FY2020  |                      |                      |                      |                       |                        |                        |                        |                       |                       |                      | 2030                  |
| Proposed FY2021 Outlook Projects          | FY2020  | 78,021               | 55,725               | 92,062               | 172,003               | 129,068                | 101,580                | 115,656                | 92,711                | 90,875                | 76,308               | <b>2030</b> 1,004,008 |
| Proposed FY2021 Outlook Projects Programs | FY2020  | 78,021               | 55,725               | 92,062               | 172,003               | 129,068                | 101,580                | 115,656                | 92,711                | 90,875                | 76,308               | <b>2030</b> 1,004,008 |

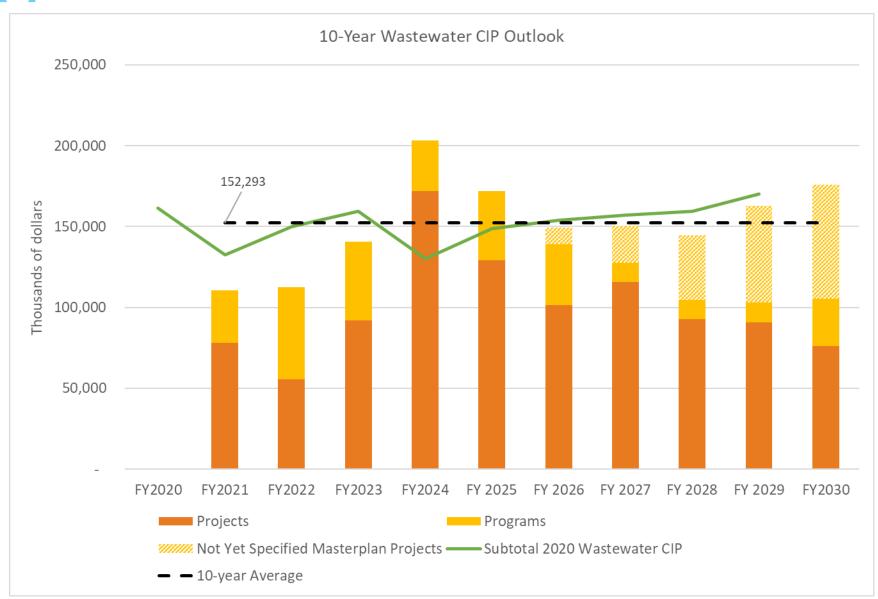



Figure VII-2. 10-Year Wastewater CIP Outlook Chart.



# PROCESS

III FINANCE

IV CIP SUMMARY

**V** PRIORITIZATION

VI PROJECTS BY CATEGORY VII TEN-YEAR OUTLOOK VIII PROJECT DESCRIPTIONS

IX GLOSSARY

## VIII. PROJECT DESCRIPTIONS

This chapter contains a one-page description of each CIP project. These descriptions are intended to be at-a-glance information related to each project that provides a general understanding of the scope of work, project phasing and projected expenses. The full Business Case Justification documentation related to each project can be found within the Appendices.

SECTION 1 WATER

Proiect Title Lake Huron Water Treatment Plant, Low-Lift, High Lift and Filter Backwash Pumping System Improvements

**Project Status** Active

Water Class Lvl 1

Treatment Plants and Facilities Class Lvl 2

Class Lvl 3 Lake Huron

Saint Clair County Location

✓ Innovation

Conc. WW Master Plan

✓ Water MP Right Sizing

✓ Reliability/Redundancy

☐ NEWTP Repurposing

 $^{oxed}$  Project New To CIP



Lake Huron WTP

**Project Engineer/Manager** Eric Kramp

**Director** Grant Gartrell

#### **Project Score**

71.6

**Problem Statement** Improvements needed to align the existing low lift pumping rate with the Lake Huron WTP production rate per the 2015 Water Master Plan Update.

> Currently, constant speed pumping at the low-lift portion of the plant can force it to operate in a semibatch mode during night-time, low-demand periods. Existing electrical gear for low- and high-lift pumping units and filter backwash pumps are original to plant, beyond useful service life and need to be replaced to improve reliability, serviceability, maintainability, and efficiency.

Similarly, phosphoric acid chemical storage tanks and associated fill piping are also past their useful service life and in the case of the piping has had leaks and many repairs.

Scope of Work / Project This CIP will be delivered using a design-bid-build project delivery method. The project's scope of Alternatives improvements will generally include replacement of the following systems and equipment:

- 1. High-voltage electrical system at the facility
- 2. Replace low-lift pumps 3 and 4 with new pumps, right-sized to current and projected demands.
- 3. Rehabilitate or replace high-lift pumping units, right-sized to current and projected demands.
- 4. Rehabilitate or replace filter wash water pumps and related equipment.
- 5. Replace phosphoric acid storage tanks and fill piping.
- 6. Update instrumentation, controls and supervisory, control and data acquisition (SCADA) systems related to above-mentioned the pumping system equipment.

Other Important Info \*Innovation note: Ensure energy efficiency.

Coordination between existing pumping unit and motor required during design. Critical speed analysis may show pump improvements needed to operate at reduced speeds. Uncovering an innovative rehabilitation design to minimize maintenance of existing drives.

Project Title Lake Huron Water Treatment Plant, Low-Lift, High Lift and Filter Backwash Pumping System Improvements

| CIP Alias | FY16 | FY17 | FY18  | FY19  | FY20  | FY21  | FY22  | FY23   | FY24   | FY25   | FY26   | Total  | 5-Yr Total |
|-----------|------|------|-------|-------|-------|-------|-------|--------|--------|--------|--------|--------|------------|
| 2021      | 0    | 0    | 0     | 14    | 1,236 | 1,636 | 1,749 | 13,725 | 12,768 | 12,841 | 11,121 | 55,090 | 42,719     |
| 2020      | 0    | 0    |       | 0     | 401   | 1,611 | 3,169 | 4,450  | 10,000 | 32,757 | 0      | 52,388 | 19,631     |
| 2019      | 0    |      |       |       | 401   | 1,611 | 3,169 | 4,450  | 42,757 | 0      | 0      | 52,388 | 9,631      |
| 2018      |      | 200  | 2,500 | 3,000 |       |       |       |        | 0      | 0      | 0      | 5,700  | 5,500      |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

Proiect Title Lake Huron Water Treatment Plant, Miscellaneous Mechanical HVAC Improvements

**Project Status** Active □ Innovation Water Conc. WW Master Plan Class Lvl 1 Treatment Plants and Facilities ☐ Water MP Right Sizing Class Lvl 2 ☐ Reliability/Redundancy Class LvI 3 Lake Huron ☐ NEWTP Repurposing Saint Clair County Location  $^{oxed}$  Project New To CIP

The photo shows the condition of the heating system hot water piping.

Project Engineer/Manager Brian VanHall

**Director** Grant Gartrell

#### **Project Score**

77

Problem Statement Existing heating, ventilating and air-conditioning systems Lake Huron are 40 years old and are either not operable or are energy-inefficient. Ventilation is inadequate in the filter areas of the plant. Indoor summer-time temperatures exceed 90F in the administration building and process control laboratory due to no air conditioning in this building. These elevated temperatures make for very uncomfortable working conditions for the chemists stationed in the laboratory full-time and plant team member who work in this building.

Scope of Work / Project This CIP project is being delivered using a design-bid-build project delivery model. The scope of work **Alternatives** generally includes installing:

- 1. High-efficiency, natural gas-fired hot-water boilers, hot-water radiators, and hot-water and cold-water return piping throughout the facility.
- 2. Air-conditioning system for the administration building, including the process control laboratory and control room.
- 3. Roof-top mounted air handlers to ventilate the filter buliding.
- 4. Heating and ventilating system for the high-voltage electrical switchgear room.
- 5. Heating and ventilating system for the chlorine storage and feeder rooms.
- 6. Dehumidification system for the filter piping galleries.
- 7. Doors and vestibules to segregate areas of different indoor air control zones.
- 8. Back flow preventers to protect water quality in potable water systems at the plant from non-potable uses.

Other Important Info There are three contracts associated with this CIP, including:

CS-1732 Engineering Design and Construction Administration Contract (active)

CON-182 Backflow Preventer Construction Contract (closed)

CON-212 HVAC Construction Contract (active)

Project Title Lake Huron Water Treatment Plant, Miscellaneous Mechanical HVAC Improvements

| CIP Alias | FY16 | FY17 | FY18  | FY19  | FY20  | FY21 | FY22 | FY23 | FY24 | FY25 | FY26 | Total | 5-Yr Total |
|-----------|------|------|-------|-------|-------|------|------|------|------|------|------|-------|------------|
| 2021      | 0    | 0    | 0     | 6,991 | 1,972 | 41   | 0    | 0    | 0    | 0    | 0    | 9,004 | 41         |
| 2020      | 0    | 0    | 2,020 | 4,422 | 1,882 | 0    | 0    | 0    | 0    | 0    | 0    | 8,324 | 1,882      |
| 2019      | 0    | 309  | 781   | 3,666 | 3,873 | 13   |      |      |      | 0    | 0    | 8,642 | 7,552      |
| 2018      |      | 270  | 1,030 | 3,130 | 3,050 | 422  |      |      | 0    | 0    | 0    | 7,902 | 7,632      |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

Class Lvl 2

Class Lvl 3

Location

Project Title Lake Huron Water Treatment Plant, Electrical Tunnel Rehabilitation

Project Status Active

Class Lvl 1 Water 🗆 Conc. WW Master Plan

Treatment Plants and Facilities 

Water MP Right Sizing

✓ Reliability/Redundancy

☐ NEWTP Repurposing

 $\square$  Project New To CIP

Project Engineer/Manager Jorge Nicolas

Lake Huron

Saint Clair County

**Director** Grant Gartrell

38.6



Lake Huron WTP Electrical Tunnel

### **Project Score**

Problem Statement Existing electrical tunnel concrete has failed in the past and has seen emergency repairs. This project will

provide permanent concrete and structural improvements to this tunnel that carries the primary electrical feed to the entire plant. The existing medium voltage two electrical feeders are old and

beyond their 30-years service life. This project will replace the two electrical feeders with new.

Scope of Work / Project This CIP project is being delivered using a design-bid-build project delivery model. The scope of work

**Alternatives** generally includes restoring concrete within the medium-voltage feeder electrical tunnel to prevent water intrusion and further damage to concrete, electrical cables, conduits, duct banks, and cable trays. The work also includes replacing the medium-voltage electrical feeders between the site's primary

transformers and the low-lift pumping plant.

Other Important Info Moved construction start to FY2019, added GLWA costs. JN 2019

| CIP Alias | FY16 | FY17 | FY18  | FY19  | FY20  | FY21 | FY22 | FY23 | FY24 | FY25 | FY26 | Total | 5-Yr Total |
|-----------|------|------|-------|-------|-------|------|------|------|------|------|------|-------|------------|
| 2021      | 0    | 0    | 0     | 2,764 | 1,372 | 0    | 0    | 0    | 0    | 0    | 0    | 4,136 | 0          |
| 2020      | 0    | 0    | 63    | 384   | 4,296 | 6    | 0    | 0    | 0    | 0    | 0    | 4,749 | 4,302      |
| 2019      | 0    |      | 116   | 414   | 4,296 | 6    |      |      |      | 0    | 0    | 4,832 | 4,716      |
| 2018      |      |      | 1,000 | 3,000 | 1,600 |      |      |      | 0    | 0    | 0    | 5,600 | 5,600      |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

Proiect Title Lake Huron Water Treatment Plant, Filter Instrumentation and Raw Water Flow Metering Improvements

**Project Status** Active

Water Class Lvl 1

Treatment Plants and Facilities Class Lvl 2

Class Lvl 3 Lake Huron

Location Saint Clair County ✓ Innovation

Conc. WW Master Plan

☐ Water MP Right Sizing

✓ Reliability/Redundancy

☐ NEWTP Repurposing

 $^{oxed}$  Project New To CIP



Raw Water Flow Meter

**Project Engineer/Manager** Eric Kramp

**Director** Grant Gartrell

#### **Project Score**

62.2

Problem Statement The filter instrumentation and raw water metering at the Lake Huron WTP is not functioning and is in need of replacement. Replacement of this equipment is needed for reliable plant operations.

> Signifiacnt improvements to the LHWTP Ovation control system network "backbone" will be performed under this CIP 111006.

Scope of Work / Project This project will be delivered using a design-bid-build project delivery method. The scope of work will **Alternatives** generally include the following:

- 1. Installation of new filter instrumentation and controls.
- 2. Installation of new raw water flow metering instrumentation.
- 3. Installation of new programmable logic controllers (PLCs) and associated process control computer workstations throughout the plant.
- 4. Installation of new process control network backbone.
- 5. Installation of new process control system (i.e. Ovation) hardware.

| CIP Alias | FY16 | FY17 | FY18 | FY19   | FY20   | FY21  | FY22  | FY23  | FY24  | FY25  | FY26 | Total  | 5-Yr Total |
|-----------|------|------|------|--------|--------|-------|-------|-------|-------|-------|------|--------|------------|
| 2021      | 0    | 0    | 0    | 778    | 236    | 235   | 235   | 2,330 | 6,184 | 6,628 | 0    | 16,626 | 15,612     |
| 2020      | 0    | 0    | 735  | 55     | 3,333  | 3,333 | 3,333 | 0     | 0     | 0     | 0    | 10,789 | 9,999      |
| 2019      | 0    | 253  | 643  | 43     | 8,647  | 9,816 | 6,909 | 4     |       | 0     | 0    | 26,315 | 25,419     |
| 2018      |      | 100  | 600  | 12,150 | 11,780 |       |       |       | 0     | 0     | 0    | 24,630 | 24,530     |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

**Proiect Title** Lake Huron Water Treatment Plant, Raw Sludge Clarifier and Raw Sludge Pumping System Improvements

□ Innovation

**Project Status** Active

Water Class Lvl 1

Treatment Plants and Facilities Class Lvl 2

Class LvI 3 Lake Huron

Location Saint Clair County ☐ Reliability/Redundancy

☐ NEWTP Repurposing

☐ Water MP Right Sizing

Conc. WW Master Plan

**Project New To CIP** 

Project Engineer/Manager Brian VanHall

**Director** Grant Gartrell

53.2



Raw sludge clarifier at Lake Huron WTP

#### **Project Score**

Problem Statement The existing WWRB and clarifiers have noticeable deteriorating concrete and walls that have permanently deflected. There is also concrete deterioration in the sludge pumping station as well as difficulties with maintenance and operation of the existing pumps. For example, the existing pumps are not equipped with permanent lifting mechanisms. A truck with a crane has to be mobilized to the plant to pull an existing pump when maintenance or repairs are needed. The new sludge pumping units will be equipped with permanent lifting mechanisms so that pumps can be pulled by plant staff without mobilizing a specialty crew to perform these types of tasks.

> Spent filter backwash is conveyed to the Waste Wash Water Retention Basin (WWRB) that was constructed in the early 1970s. Twice yearly, as part of the settling basin cleaning, the flush water and alum sludge from the Lake Huron Water Treatment Plant settling basins are drained to the clarifiers that are adjacent to the WWRB. Clarifiers Nos. 1 and 2 were constructed at the same time as the WWRB. Sludge is discharged from these clarifiers to drying lagoons using a sludge pumping station. The clarifiers also serve as redundant waste wash water retention volume during normal plant operations.

Scope of Work / Project This project will be delivered using a design-bid-build project delivery method. GLWA retained an Alternatives engineering consultant under GLWA Contract No. CS-171 "Raw Sludge Clarifiers and Raw Sludge Pumping Station Improvements" to conduct a condition assessment and design improvements for LH raw sludge handling. The WWRB, Clarifier Nos. 1 and 2, and the sludge pumping station all require improvement. The scope of construction involves:

- 1. Demolish existing clarifiers and sludge pumping station
- 2. Construct new cast-in-place reinforced concrete waste wash water retention basin
- 3. Construct new cast-in-place reinforced concrete sludge pumping station equipped with new pump lifting

mechanisms

#### Project Title Lake Huron Water Treatment Plant, Raw Sludge Clarifier and Raw Sludge Pumping System Improvements

- 4. Install new diversion gate structures between sludge drying lagoons
- 5. Install new junction structures between existing and new waste wash water retention basins
- 6. Install new yard lighting around the WWRB and clarifiers

### Other Important Info This project should be completed prior to cessation of treatment at the Northeast WTP.

Project History: The clarifier/backwash structure is original to the plant. The tank walls appear to have been inadequately designed and/or constructed to withstand the loading of the surround soils.

Challenges: Improvements will require coordination with plant operations (filter backwashing, sedimentation basin cleaning) and requires bypass pumping due to signficant leakage from filter outlet valves.

| CIP Alias | FY16 | FY17 | FY18 | FY19 | FY20  | FY21  | FY22  | FY23 | FY24 | FY25 | FY26 | Total | 5-Yr Total |
|-----------|------|------|------|------|-------|-------|-------|------|------|------|------|-------|------------|
| 2021      | 0    | 0    | 0    | 649  | 4,896 | 3,392 | 0     | 0    | 0    | 0    | 0    | 8,937 | 3,392      |
| 2020      | 0    | 0    | 284  | 194  | 4,660 | 4,661 | 0     | 0    | 0    | 0    | 0    | 9,799 | 9,321      |
| 2019      | 0    | 9    | 422  | 212  | 1,612 | 3,608 | 1,221 |      |      | 0    | 0    | 7,084 | 6,653      |
| 2018      |      |      | 50   | 920  | 6,163 |       |       |      | 0    | 0    | 0    | 7,133 | 7,133      |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

Proiect Title Lake Huron Water Treatment Plant, Architectural Programming for Laboratory and Admin Building

**Project Status** Future Planned Innovation Water Conc. WW Master Plan Class Lvl 1 Treatment Plants and Facilities ☐ Water MP Right Sizing Class Lvl 2 ☐ Reliability/Redundancy Class Lvl 3 Lake Huron ☐ NEWTP Repurposing Location Saint Clair County **Project New To CIP** 40.6 Lake Huron Water Treatment Plant Project Engineer/Manager Shiyu Yang **Director** Grant Gartrell **Project Score Problem Statement** The Lake Huron Water Treatment Plant was constructed in the early 1970s and started operating in 1976. The existing process control laboratory and administration building interiors are original construction,

Scope of Work / Project This will be a study phase project that will involve architectural programming to determine the most Alternatives efficient architectural layout that meets current process laboratory control technology and administrative workflow practices; and that can be provided through a construction renovation project within the existing building footprint.

bathroom fixtures, and lighting fixtures. The original control room board is still located in the laboratory and consumes a large amount of space that is not used and inefficient. The architectural layout of the laboratory and administration building is designed around the early 1970s workflows and technology.

including but not limited to flooring, wall coverings, ceilings, lab cabinetry, control room boards,

| •         |      | •    |      |      | •    | _    |      | •    |      |      |       |       |            |
|-----------|------|------|------|------|------|------|------|------|------|------|-------|-------|------------|
| CIP Alias | FY16 | FY17 | FY18 | FY19 | FY20 | FY21 | FY22 | FY23 | FY24 | FY25 | FY26  | Total | 5-Yr Total |
| 2021      | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 1,299 | 1,299 | 0          |
| 2020      | 0    | 0    |      | 0    | 0    | 0    | 0    | 0    | 0    | 300  | 0     | 300   | 0          |
| 2019      | 0    |      |      |      |      |      |      |      | 300  | 0    | 0     | 300   | 0          |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

Lake Huron

Saint Clair County

Class Lvl 2

Class Lvl 3

Location

Project Title Lake Huron Water Treatment Plant - High Lift Pumping, Water Production Flow Metering and Yard Piping

Project Status Active

Class Lvl 1 Water 🗆 Conc. WW Master Plan

Treatment Plants and Facilities 

Water MP Right Sizing

✓ Reliability/Redundancy

☐ NEWTP Repurposing

 $^{ot}$  Project New To CIP

Project Engineer/Manager Brian VanHall

Director Grant Gartrell Project Score

riojeci score

Problem Statement Three new, smaller capacity, high-lift pumping units are needed to provide reduced finished water flows out of Lake Huron WTP to accommodate the relocation of the 96-inch transmission main south of Dorsey-Dickenson valve and to accommodate the installation of a new water production flow meter at the Lake Huron WTP. The three, new smaller capacity high-lift pumping units will also serve a longer term need to better match lower diurnal demands seen at the Lake Huron WTP. Installation of the new water

62.2

production flow meter can only occur after the three new smaller high-lift pumping units are installed.

Scope of Work / Project This project will be delivered using a design-build project delivery method. The scope of work involves

Alternatives designing and building a new water production flow meter and associated meter vault to more accurately measure finished water production flows from the facility. This work will also entail constructing additional high-lift, finished water header piping, valves and appurtenances to facilitate construction of the new metering infrastructure. The scope also includes installing three new 35 million-gallon-per day (MGD) high-lift pumping units, including pumps, motors, instrumentation, control, and

electrical work.

| CIP Alias | FY16 | FY17 | FY18 | FY19 | FY20  | FY21   | FY22  | FY23  | FY24   | FY25  | FY26 | Total  | 5-Yr Total |
|-----------|------|------|------|------|-------|--------|-------|-------|--------|-------|------|--------|------------|
| 2021      | 0    | 0    | 0    | 30   | 548   | 1,856  | 3,554 | 8,991 | 10,561 | 3,686 | 0    | 29,226 | 28,648     |
| 2020      | 0    | 0    |      | 16   | 9,030 | 10,030 | 7,030 |       |        |       | 0    | 26,106 | 26,090     |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

Proiect Title Lake Huron Water Treatment Plant -Filtration and Pretreatment Improvements

**Project Status** Future Planned

Water Class Lvl 1

Treatment Plants and Facilities Class Lvl 2

Lake Huron Class Lvl 3

Saint Clair County Location

☐ Innovation

Conc. WW Master Plan

☐ Water MP Right Sizing

✓ Reliability/Redundancy

☐ NEWTP Repurposing

✓ Project New To CIP



Lake Huron Water Treatment Plant

**Project Engineer/Manager** Eric Kramp

**Director** Grant Gartrell

#### **Project Score**

71

**Problem Statement** Significant issues exist in the pretreament and filtration portions of the LHWTP:

Approximately half of the flocculators are in service.

Standing water on top of the sedimentation basins and flocculators creates concerns regarding water quality

Filter influent and drain valves do not seal well, creating water loss

Filter underdrains and media have not been evaluated and require confirmation of condition Isolation valves between the filters, filtered water conduit, and clearwells are known to leak heavily

Scope of Work / Project This project will be delivered using a design-bid-build project delivery method. The scope of work will **Alternatives** generally include the following:

- 1. Replace the existing flocculation system with a new system.
- 2. Construct filtration improvements, including filter media, filter auxiliary scoring equipment, filter wash water troughs, and other filter tank work.
- 3. Replace the existing filter control valves and valve operators with new.
- 4. Rehabilitate concrete associated with the filters.
- 5, Conduct civil/site drainage control improvements at the sedimentation basins and flocculator chambers.

Flocculators: following an O&M-funded study, replace the filters with best available technology -horizontal cross flow, vertical, or passive

Add drainage to the sedimentation basins and flocculator roofs

Replace isolation and valves as necessary

Repaint WW Conduit

Replace underdrain and/or media as necessary

Project Title Lake Huron Water Treatment Plant -Filtration and Pretreatment Improvements

| CIP Alias | FY16 | FY17 | FY18 | FY19 | FY20 | FY21 | FY22 | FY23 | FY24 | FY25 | FY26  | Total | 5-Yr Total |
|-----------|------|------|------|------|------|------|------|------|------|------|-------|-------|------------|
| 2021      | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 12   | 48   | 5,572 | 5,632 | 60         |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

**Project Title** Lake Huron WTP Pilot Plant

**Project Status** Future Planned

Water Class Lvl 1

Treatment Plants and Facilities Class Lvl 2

Class Lvl 3 Lake Huron

Saint Clair County Location

✓ Innovation

Conc. WW Master Plan

✓ Water MP Right Sizing

☐ Reliability/Redundancy

NEWTP Repurposing

✓ Project New To CIP



Lake Huron Water Treatment Plant

Project Engineer/Manager Eric Griffin

**Director** John Norton

**Project Score** 

**52** 

**Problem Statement** Water Operations staff at Lake Huron would benefit from the ability to test potential changes to existing water treatment practices and investigate new and innovative treatment advances.

Scope of Work / Project A small scale pilot plant provides opportunity for testing and investigation without disruption to the full Alternatives scale facility. Skid mounted units mimicking treatment at Lake Huron: Chemical addition, modified direct filtration facilities and data monitoring and recording would be provided for team education and

trainina.

Other Important Info Scope of work to include engineering services for planning, construction and training.

|           |      |      |      |      |      |      | <b>7</b> | , ,  |      |      |       |       |            |
|-----------|------|------|------|------|------|------|----------|------|------|------|-------|-------|------------|
| CIP Alias | FY16 | FY17 | FY18 | FY19 | FY20 | FY21 | FY22     | FY23 | FY24 | FY25 | FY26  | Total | 5-Yr Total |
| 2021      | 0    | 0    | 0    | 0    | 0    | 0    | 0        | 0    | 0    | 0    | 1,794 | 1,794 | 0          |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

Class Lvl 2

Class Lvl 3

Location

Project Title Northeast Water Treatment Plant, Low-Lift Pumping Plant Caisson Rehabilitation

Project Status Active

Class Lvl 1 Water 🗆 Conc. WW Master Plan

Treatment Plants and Facilities 

Water MP Right Sizing

☐ Reliability/Redundancy

□ NEWTP Repurposing

 $^{ot}$  Project New To CIP

Project Engineer/Manager Govind Patel

City of Detroit

Northeast

**Director** Grant Gartrell

51.6



Low Lift Pumping Plant at Northeast WTP

## **Project Score**

Problem Statement Low Lift Pump Discharge flumes were leaking and had significant concrete deterioration within the Low-

Lift Pumping Plant Caisson at the Northeast WTP. Water leaks posed hazards to nearby electrical equipment as well as presented potential slip hazards for employees. Additionally, the glazed tile at the upper elevations of the low-lift motor floor were unstable which presented a safety hazard to those

working on the low lift pump motor floor.

Scope of Work / Project The low lift pump discharge flumes have been lined with stainless steel plates to stop water leakage into

**Alternatives** the low lift pump station operating floors. The unstable glazed tile blocks were replaced with new.

Other Important Info The project is under construction and is substantially complete.

| CIP Alias | FY16 | FY17 | FY18  | FY19  | FY20 | FY21 | FY22 | FY23 | FY24 | FY25 | FY26 | Total | 5-Yr Total |
|-----------|------|------|-------|-------|------|------|------|------|------|------|------|-------|------------|
| 2021      | 0    | 0    | 0     | 1,135 | 210  | 0    | 0    | 0    | 0    | 0    | 0    | 1,345 | 0          |
| 2020      | 0    | 0    | 473   | 889   | 203  | 0    | 0    | 0    | 0    | 0    | 0    | 1,565 | 203        |
| 2019      | 0    | 163  | 70    | 831   | 619  | 30   | 4    |      |      | 0    | 0    | 1,717 | 1,484      |
| 2018      |      | 150  | 1,183 |       |      |      |      |      | 0    | 0    | 0    | 1,333 | 1,183      |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

**Project Title** Northeast Water Treatment Plant High-Lift Pumping Station Improvements

**Project Status** Future Planned

Water Class Lvl 1

Treatment Plants and Facilities Class Lvl 2

Class LvI 3 Northeast

City of Detroit Location

□ Innovation

Conc. WW Master Plan

✓ Water MP Right Sizing

✓ Reliability/Redundancy

✓ NEWTP Repurposina

 $\square$  Project New To CIP



Northeast Water Treatment Plant

Project Engineer/Manager Mike Garrett

**Director** Grant Gartrell

## **Project Score**

68

Problem Statement Existing mechanical, electrical, instrumentation, and control system equipment within the high-lift pumping plant at the Northeast Water Treatment Plant is mostly original (i.e. 1956). Both medium-voltage and low-voltage switchgear are beyond their useful service life. Stock replacement parts are no longer available. When repairs are needed to the switchgear, then either un-used redundant gear are used for parts or custom-manufactured gear is obtained at a high cost with long lead times. In some cases, certain medium-voltage switchgear cubicles are irrepairable. All medium-voltage cables are beyond their useful life especially with respect to insulation properties and therefore require replacement. Primary sevice transformers are beyond their useful service life and will be evaluated for replacement. An existing, former City of Detroit Public Lighting Department (PLD) transformer is not used because it is incapable of delivering adequate power to its connedcted bus. Removal of this former PLD feed will be evaluated. DTE primary feeder cables will be evaluated and replaced as needed. Mechanically, the existing high-lift pumping units are also beyond their useful service life and in addition pump motors noise levels are approaching the maximum 8-hour time-weighted average for noise levels per OSHA regulations. Likewise, the steam heating system is past its usefull service life, and there is no redudancy in the heating system. New heating for the high-lift pumping plant is needed and will be separated from the rest facility's heating system. Lastly, the interior and exterior windows, doors, handrails, and grating systems are original to the plant and need to be replaced with new, more energy efficient styles.

Scope of Work / Project This project will be delivered using a design-bid-build project delivery method. The scope of work **Alternatives** generally includes:

- 1) Replace medium voltage switchgear, Unit Substation 1, all motor control centers (MCCs), power panels, transformers, and lighting panels.
- 2) Replace HL Pumps and size according to projected demands.
- 3) Replace pump motor controls to accommodate remote operation.
- 4) Replace primary transformers and test/replace feeders to property lines. Coordinate with DTE to

# Project Title Northeast Water Treatment Plant High-Lift Pumping Station Improvements

ensure that all 3 remaining medium-voltage transformers are capable of delivering the required power.

- 5) Replace all heating equipment in high lift area and install new boiler.
- 6) Replace windows, doors, handrails and grating systems.

|           |      | •    |      |      | •    |      |      |      |        |        |        |        |            |
|-----------|------|------|------|------|------|------|------|------|--------|--------|--------|--------|------------|
| CIP Alias | FY16 | FY17 | FY18 | FY19 | FY20 | FY21 | FY22 | FY23 | FY24   | FY25   | FY26   | Total  | 5-Yr Total |
| 2021      | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 40   | 1,228  | 2,383  | 53,914 | 57,565 | 3,651      |
| 2020      | 0    | 0    |      | 0    | 0    | 0    | 0    | 0    | 0      | 62,234 | 0      | 62,234 | 0          |
| 2019      | 0    |      |      |      |      |      |      |      | 62,265 | 0      | 0      | 62,265 | 0          |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

Proiect Title Northeast Water Treatment Plant - Replacement of Covers for Process Water Conduits

**Project Status** Active ☐ Innovation Water Conc. WW Master Plan Class Lvl 1 Treatment Plants and Facilities ☐ Water MP Right Sizing Class Lvl 2 ☐ Reliability/Redundancy Northeast Class Lvl 3 □ NEWTP Repurposing City of Detroit Location **Project New To CIP** 61 **Project Engineer/Manager** Peter Fromm **Director** Grant Gartrell **Project Score Problem Statement** The existing steel covers that cover entry openings into filtered water conduits at the plant are significantly deteriorated to the point where they are not water-tight and require replacement. Therefore, these covers are unsafe and have been identified by the MDEQ in the most recent sanitary survey as requiring replacement. Temporary barricades are in place to prevent injury and further damage. Scope of Work / Project Replace steel covers, frames and associated structural support beams over the settled water and

Other Important Info Challenges: Temporary support of sluice gate operators and partial shutdown of certain portions of the plant to facilitate replacement of the existing steel covers, frames, and associated structural supports that are located immediately above the filtered water conduits.

## Project Expenses Compared to Previous CIP Versions (All figures are in \$1.000's)

**Alternatives** filtered water conduits.

|           |      | •    |      |      | •    |       | -    |      |      |      |      |       |            |  |
|-----------|------|------|------|------|------|-------|------|------|------|------|------|-------|------------|--|
| CIP Alias | FY16 | FY17 | FY18 | FY19 | FY20 | FY21  | FY22 | FY23 | FY24 | FY25 | FY26 | Total | 5-Yr Total |  |
| 2021      | 0    | 0    | 0    | 14   | 269  | 1,096 | 14   | 0    | 0    | 0    | 0    | 1,393 | 1,110      |  |
| 2020      | 0    | 0    |      |      | 166  | 647   |      |      |      |      | 0    | 813   | 813        |  |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

Class Lvl 1

Water

**Project Engineer/Manager** Peter Fromm

Project Title Northeast Water Treatment Plant Flocculator Replacements

Project Status Active

Class Lyl 2 Treatment Plants and Facilities 

Water MP Right Sizing

Class LvI 3 Northeast 

Reliability/Redundancy

**Location** City of Detroit 

NEWTP Repurposing

 $\square$  Project New To CIP

67.4

Director Grant Gartrell Project Score

**Problem Statement** Most of the existing flocculators are not operable and are beyond repair, which reduces sedimentation effectiveness and creates a greater load on the filtration process. It should be noted that treatment at

Conc. WW Master Plan

the Northeast Water Treatment Plant is planned to be decommissioning, as recommended in the 2015 Water Master Plan Update, in order to align overall system water treatment capacity with current as well as 20-year projected water demands. As such, the scope of improvements to flocculation under this CIP

will only involve replacing 1/2 the flocculators.

**Scope of Work / Project** This CIP project is being delivered under a design-bid-build project delivery method and generally **Alternatives** includes the following scope of work:

1. Demolition of all existing flocculators including drives, motors, shafts, and paddles.

- 2. Installation of half of the flocculators including drives, motors, shafts, and paddles.
- 3. Associated architectural, structural, and electrical upgrades within both of the flocculator buildings.

**Other Important Info** Only 1/2 of the existing flocculators will be replaced under this CIP because the treatment works at Northeast are slated for decommissioning.

Challenges: Water production during construction.

|           |      | -    |      |      |       |       |       |      |      |      |      |       |            |
|-----------|------|------|------|------|-------|-------|-------|------|------|------|------|-------|------------|
| CIP Alias | FY16 | FY17 | FY18 | FY19 | FY20  | FY21  | FY22  | FY23 | FY24 | FY25 | FY26 | Total | 5-Yr Total |
| 2021      | 0    | 0    | 0    | 3    | 460   | 2,773 | 3,026 | 849  | 0    | 0    | 0    | 7,111 | 6,648      |
| 2020      | 0    | 0    |      | 3    | 1,356 | 1,356 | 3     |      |      |      | 0    | 2,718 | 2,715      |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

Project Title Southwest Water Treatment Plant, High-Lift Pump Discharge Valve Actuators Replacement

**Project Status** Active Innovation Water Conc. WW Master Plan Class Lvl 1 Treatment Plants and Facilities ☐ Water MP Right Sizing Class Lvl 2 ☐ Reliability/Redundancy Southwest Class Lvl 3 ☐ NEWTP Repurposing Wayne County - Outside Detroit Location **Project New To CIP** 53.2 Oil hydraulic valve actuators leaking oil Project Engineer/Manager Shakil Ahmed **Director** Terry Daniel **Project Score** Problem Statement Existing oil hydraulic high lift valve actuators are leaking oil and at the end of service life. The leaking actuators pose safety concerns and replacement of valve actuators is needed. Scope of Work / Project This project involves replacement of the existing oil hydraulic actuators on the high lift pumping units with Alternatives electric motor operators. A new gas-fired generator is being installed to provide backup power to the electric motor operators. In addition, a section of new high lift header is being installed along with header isolation valves for the high lift pumps.

Other Important Info The construction contract, CON-281, for this CIP project was awarded to Weiss Construction and the

Challenges: Sequencing the demolition and replacement of the existing oil hydraulic power system will require shutdown of individual high lift pumping units.

notice to proceed issued on October 1, 2018. The project is scheduled for completion by November

## Project Expenses Compared to Previous CIP Versions (All figures are in \$1,000's)

2021.

|           |      |      |      |       |       | <b>J</b> | <b>7</b> | ,    |      |      |      |       |            |
|-----------|------|------|------|-------|-------|----------|----------|------|------|------|------|-------|------------|
| CIP Alias | FY16 | FY17 | FY18 | FY19  | FY20  | FY21     | FY22     | FY23 | FY24 | FY25 | FY26 | Total | 5-Yr Total |
| 2021      | 0    | 0    | 0    | 2,479 | 2,313 | 1,094    | 0        | 0    | 0    | 0    | 0    | 5,886 | 1,094      |
| 2020      | 0    | 0    | 249  | 1,157 | 2,876 | 1,144    | 6        | 0    | 0    | 0    | 0    | 5,432 | 4,026      |
| 2019      | 0    | 115  | 186  | 1,157 | 2,876 | 1,144    | 6        |      |      | 0    | 0    | 5,484 | 5,183      |
| 2018      |      | 160  | 160  | 900   | 900   |          |          |      | 0    | 0    | 0    | 2,120 | 1,960      |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

Project Title Southwest Water Treatment Plant, Low- and High-Lift Pumping Station, Flocculation and Filtration System

**Project Status** Future Planned ✓ Innovation Water Conc. WW Master Plan Class Lvl 1 Treatment Plants and Facilities ✓ Water MP Right Sizing Class Lvl 2 ☐ Reliability/Redundancy Southwest Class Lvl 3 □ NEWTP Repurposing Wayne County - Outside Detroit Location  $\square$  Project New To CIP 50.2 Example of a butterfly valve Project Engineer/Manager Shakil Ahmed **Director** Grant Gartrell **Project Score** Problem Statement Most of the plant's process mechanical, building mechanical and electrical systems are original to the plant (circa1962) and are nearing or are past end of useful service life. As a result, additional plant maintenance effort is necessary to meet plant operational needs. Scope of Work / Project The work includes design and construction services for the replacement of numerous large-diameter Alternatives butterfly valves and water-control gates throughout the low-lift, high-lift, filtration, and flocculator buildings. The low- and high-lift pumping units, flocculators and filters will all be improved considered the current and 20-year projected demands so that they are all right sized. Other Important Info This work is included in the 2015 water master plan update. The aforementioned water master plan update also recommends that GLWA consider decommissioning treatment at the Southwest Water Treatment Plant if water demand continues to trend in a downward direction, which has been the case.

| CIP Alias | FY16 | FY17 | FY18 | FY19 | FY20 | FY21 | FY22 | FY23  | FY24    | FY25    | FY26   | Total   | 5-Yr Total |
|-----------|------|------|------|------|------|------|------|-------|---------|---------|--------|---------|------------|
| 2021      | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0     | 0       | 0       | 14,314 | 14,314  | 0          |
| 2020      | 0    | 0    |      | 0    | 0    | 0    | 0    | 0     | 0       | 148,286 | 0      | 148,286 | 0          |
| 2019      | 0    |      |      |      |      |      |      |       | 148,286 | 0       | 0      | 148,286 | 0          |
| 2018      |      |      |      |      |      |      |      | 2,940 | 0       | 0       | 0      | 2,940   | 0          |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

Proiect Title Southwest Water Treatment Plant, Raw Water Sampling Modifications

**Project Status** Closed Innovation Water Conc. WW Master Plan Class Lvl 1 Treatment Plants and Facilities ☐ Water MP Right Sizing Class Lvl 2 ☐ Reliability/Redundancy Southwest Class Lvl 3 □ NEWTP Repurposing Wayne County - Outside Detroit Location **Project New To CIP** 44.8 Access manhole Project Engineer/Manager Shakil Ahmed **Director** Grant Gartrell **Project Score** Problem Statement Existing raw water sampling location include recycled decant flows from residual handling facilities and do not represent a true raw water sample. A new sample pump system located upstream of the recycled decant flows is needed to obtain a true raw water Scope of Work / Project This project will design the modifications necessary to eliminate the decant and recycle of solid handling Alternatives flows from the raw water sample location serving the Southwest WTP. This project will provide for a representative raw water only sample that will improve process monitoring and associated chemical

Other Important Info The construction contract, CON-247, was awarded and the notice to proceed issued to the contractor on May 1, 2018. The project is scheduled for completion in January 2019.

> Challenges: Improvements may require another tap to the existing raw water tunnel requiring a plant shutdown (low lift pumping as a minimum). Coordination with operations required.

## Project Expenses Compared to Previous CIP Versions (All figures are in \$1.000's)

usage.

| •         |      | •    |       |       | •     | _    |      | •    |      |      |      |       |            |
|-----------|------|------|-------|-------|-------|------|------|------|------|------|------|-------|------------|
| CIP Alias | FY16 | FY17 | FY18  | FY19  | FY20  | FY21 | FY22 | FY23 | FY24 | FY25 | FY26 | Total | 5-Yr Total |
| 2021      | 0    | 0    | 0     | 787   | 35    | 0    | 0    | 0    | 0    | 0    | 0    | 822   | 0          |
| 2020      | 0    | 0    | 198   | 319   | 380   | 1    | 0    | 0    | 0    | 0    | 0    | 898   | 381        |
| 2019      | 0    | 142  | 165   | 1,054 | 1,785 | 206  |      |      |      | 0    | 0    | 3,352 | 3,045      |
| 2018      |      | 100  | 3,100 | 2,309 |       |      |      |      | 0    | 0    | 0    | 5,509 | 5,409      |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

Project Title Southwest Water Treatment Plant Chlorine Scrubber, Raw Water Screens & Related Improvements

**Project Status** Future Planned Innovation Water Conc. WW Master Plan Class Lvl 1 Treatment Plants and Facilities ☐ Water MP Right Sizing Class Lvl 2 ☐ Reliability/Redundancy Southwest Class Lvl 3 □ NEWTP Repurposing Wayne County - Outside Detroit Location **Project New To CIP** 68.2 Southwest Water Treatment Plant Project Engineer/Manager Shakil Ahmed **Director** Grant Gartrell **Project Score** Problem Statement The existing chlorine gas scrubber is nearing its end of useful service life and its absorption media will be expiring within the next few years; and therefore requires replacement. Similarly, the existing raw water screening system are original to the plant (circa 1962), are not functional, and are beyond repair. As a result, this system also requires replacement. Both the chlorine gas scrubber and raw water screening systems will require ancillary equipment improvements related to electrical, alarms, instrumentation, and controls. Scope of Work / Project This project will be delivered under a design-build project delivery model. The existing gas chlorine **Alternatives** scubber and raw water screens will be replaced with new system equipment meeting current building codes and industry best practices. The new gas chlorine scrubber and raw water screens that will be installed will be designed for current and projected water demans in accordance with the

## Project Expenses Compared to Previous CIP Versions (All figures are in \$1,000's)

this design-build project.

right-sized.

| CIP Alias | FY16 | FY17 | FY18 | FY19 | FY20 | FY21 | FY22  | FY23  | FY24  | FY25  | FY26 | Total | 5-Yr Total |
|-----------|------|------|------|------|------|------|-------|-------|-------|-------|------|-------|------------|
| 2021      | 0    | 0    | 0    | 0    | 0    | 260  | 2,238 | 2,238 | 17    | 0     | 0    | 4,753 | 4,753      |
| 2020      | 0    | 0    |      | 0    | 0    | 0    | 0     | 0     | 0     | 7,032 | 0    | 7,032 | 0          |
| 2019      | 0    |      |      |      |      |      |       |       | 7,032 | 0     | 0    | 7,032 | 0          |

Other Important Info GLWA intends to use the services of AECOM under its CIP program management contract to implement

recommendations of the 2015 Water Master Plan Update project; therefore this new equipment will be

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

Project Title Southwest Water Treatment Plant Architectural and Building Mechanical Improvements

**Project Status** Future Planned ✓ Innovation Water Conc. WW Master Plan Class Lvl 1 Treatment Plants and Facilities ☐ Water MP Right Sizing Class Lvl 2 ☐ Reliability/Redundancy Southwest Class Lvl 3 □ NEWTP Repurposing Wayne County - Outside Detroit Location **Project New To CIP** 

36



Southwest Water Treatment Plant

Project Engineer/Manager Shakil Ahmed

**Director** Grant Gartrell

## **Project Score**

Problem Statement Most of the existing low- and high-lift pumping station and administration buildings' mechanical equipment (HVAC, dehumidification, plumbing) and architectural components such as doors, windows, floors, and furnishings, are over 50 years old; and therefore are beyond their normal useful service life. Additional architectural improvements at Southwest Water Treatment Plant will include renovation of staff locker rooms and bathrooms, including a restroom designed for female staff.

Scope of Work / Project This project would be delivered using a design-bid-build project delivery method. The scope of work Alternatives would generally include:

- 1. Design of the project.
- 2. Remove existing building mechanical and architectural systems.
- 3. Install new heating and ventilating systems process and administration areas.
- 4. Install new air-conditioning systems for administration areas.
- 5. Install new dehumidification systems for the high-lift header vault.
- 6. Install new interior and exterior doors and windows.
- 7. Install new lockers, bath fixtures, water closets, flooring, ceiling, and related items in men's locker rooms and bathrooms
- 8. Construct new locker room and related bath facility for women's changing and bathing facilities.
- 9. Provide new furnishings for administration offices.

Other Important Info CS-1528 water master plan update included these improvements.

| CIP Alias | FY16 | FY17 | FY18 | FY19 | FY20 | FY21 | FY22   | FY23 | FY24 | FY25   | FY26 | Total  | 5-Yr Total |
|-----------|------|------|------|------|------|------|--------|------|------|--------|------|--------|------------|
| 2021      | 0    | 0    | 0    | 0    | 0    | 0    | 0      | 0    | 0    | 0      | 98   | 98     | 0          |
| 2020      | 0    | 0    |      | 0    | 0    | 0    | 0      | 0    | 0    | 37,336 | 0    | 37,336 | 0          |
|           |      |      |      |      |      |      | VIII-2 | .4   |      |        |      |        |            |

Project Title Southwest Water Treatment Plant Architectural and Building Mechanical Improvements

| CIP Alias | FY16 | FY17 | FY18 | FY19 | FY20 | FY21 | FY22 | FY23 | FY24   | FY25 | FY26 | Total  | 5-Yr Total |
|-----------|------|------|------|------|------|------|------|------|--------|------|------|--------|------------|
| 2019      | 0    |      |      |      |      |      |      |      | 37,336 | 0    | 0    | 37,336 | 0          |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

**Project Title** Springwells Water Treatment Plant, 1958 Filter Rehabilitation and Auxiliary Facilities Improvements

**Project Status** Active

Water Class Lvl 1

Treatment Plants and Facilities Class Lvl 2

Springwells Class Lvl 3

Wayne County - Outside Detroit Location

□ Innovation

Conc. WW Master Plan

☐ Water MP Right Sizing

☐ Reliability/Redundancy

☐ NEWTP Repurposing

**Project New To CIP** 



Springwells filter building

Project Engineer/Manager Khader Hamad

**Director** Grant Gartrell

## **Project Score**

62.2

Problem Statement The existing filtration system equipment (i.e. filter media, surface wash sweeps, filter piping, filter control valves & operators, electrical, lighting, instrumentation and controls) in the 1958 Filter Plant are original to construction and are all well beyond their useful service life. Reconstruction of the 40 filters in the 1958 Filter Plant and 19 filters in the 1930 Filter Plant that have experienced failures to their plastic-block underdrains is required to maintain reliable water production from Springwells. The existing HVAC and dehumidification system serving both the 1958 and 1930 Filter Buildings is inadequate to maintain an environment suitable for modern electrical and controls equipment. The Administration Building Laboratory requires renovation to its facilities and HVAC to meet modern code and to provide an adequate space for laboratory functions.

Scope of Work / Project This project includes the study, design (CS-1425) and construction assistance (CS-1425 and CS-200) of Alternatives improvements to the Springwells WTP that includes the rehabilitation of the 1958 Filters, rehabilitation of failed 1930s Filters, update of Operation and Maintenance Manuals, and replacement of Phosphoric Acid feed system. Provide construction services to furnish and install new filter media, underdrains, filter valves, and rate controllers; replace the existing filter control consoles, hydraulic control valves with electric control valves, enclosures; add appurtenances to enable automatic backwashing of the filters; provide a Filter Aid Polymer System to the 1930 and 1958 filter complexes; Programmable Logic Controller-based controls for automatic control of the polymer system. Conversion of the overhead bridge cranes and elevators from DC to AC power, and upgrades to meet modern codes...

Other Important Info There are a total of 108 filters at the Springwells Water Treatment Plant. This project has reconstructed 59 of these filters, including all 40 filters at the 1958 filter building and 19 filters at the 1930 filter building. The 19 filters at the 1930 filter building were previously equipped with plastic-block underdrains with porous plates. These underdrains failed and were replaced with low-profile type 316 stainless steel, slotted directmedia retaining underdrains.

Project Title Springwells Water Treatment Plant, 1958 Filter Rehabilitation and Auxiliary Facilities Improvements

| CIP Alias | FY16  | FY17   | FY18   | FY19   | FY20  | FY21 | FY22 | FY23 | FY24 | FY25 | FY26 | Total   | 5-Yr Total |
|-----------|-------|--------|--------|--------|-------|------|------|------|------|------|------|---------|------------|
| 2021      | 0     | 0      | 0      | 96,174 | 5,794 | 0    | 0    | 0    | 0    | 0    | 0    | 101,968 | 0          |
| 2020      | 0     | 0      | 89,310 | 7,978  | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 97,288  | 0          |
| 2019      | 0     | 82,682 | 7,281  | 3,501  |       |      |      |      |      | 0    | 0    | 93,464  | 3,501      |
| 2018      | 56759 | 20,353 | 310    |        |       |      |      |      | 0    | 0    | 0    | 77,422  | 310        |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

**Project Title** Springwells Water Treatment Plant, Low-Lift and High-Lift Pumping Station Improvements

**Project Status** Active

Water Class Lvl 1

Treatment Plants and Facilities Class Lvl 2

Springwells Class Lvl 3

Wayne County - Outside Detroit Location

☐ Innovation

Conc. WW Master Plan

✓ Water MP Right Sizing

✓ Reliability/Redundancy

✓ NEWTP Repurposing

**Project New To CIP** 

69.2



High Lift Station showing high lift pump pits and windows to be replaced.

**Project Engineer/Manager** Erich Klun

**Director** Grant Gartrell

## **Project Score**

Problem Statement Existing low- and high-lift pumping system electrical switchgear is original (1930s) and are well beyond their useful service life. This switchgear is unsafe, not reliable and is oversized for current and projected demands. In addition, the existing pumping units are a mix of 1930s and 1950s units and are also in need of either replacement or in the case of the pumps rehabilitation. The exterior windows on the pumping plant building are also original (1930s), are in poor condition and are not well insulated. As a result, all of the exterior windows on the pumping plant building need to be replaced with new, energy efficient windows.

Scope of Work / Project This CIP project will be delivered under a design-bid-build project delivery using a single-prime Alternatives engineering consultant and multiple prime construction contracts to deliver the entire built project. The scope of work generally includes:

- 1. Replacement of low- and high-lift pumping units, including pumps, motors, valves, and piping.
- 2. Replacement of exterior windows in the pump house, turbine house, boiler house, and switch house.
- 3. Replacement of medium-voltage electrical system.
- 4. Replacement of all pump isolation gates.

| CIP Alias | FY16 | FY17 | FY18  | FY19  | FY20   | FY21   | FY22   | FY23   | FY24   | FY25   | FY26   | Total   | 5-Yr Total |
|-----------|------|------|-------|-------|--------|--------|--------|--------|--------|--------|--------|---------|------------|
| 2021      | 0    | 0    | 0     | 2,080 | 3,039  | 7,113  | 12,893 | 18,905 | 18,690 | 19,175 | 92,940 | 174,835 | 76,776     |
| 2020      | 0    | 0    | 498   | 2,607 | 5,985  | 9,302  | 13,724 | 13,724 | 26,145 | 42,831 | 0      | 114,816 | 68,880     |
| 2019      | 0    | 22   | 463   | 1,433 | 2,481  | 1,453  | 11,228 | 8,675  | 59,748 | 0      | 0      | 85,503  | 25,270     |
| 2018      |      |      | 1,500 | 2,000 | 12,500 | 22,000 | 21,500 | 26,500 | 0      | 0      | 0      | 86,000  | 59,500     |

Project Title Springwells Water Treatment Plant, Low-Lift and High-Lift Pumping Station Improvements

\* In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

Project Title Water Production Flow Metering Improvements at Northeast, Southwest and Springwells Water Treatment Plants

**Project Status** Active □ Innovation Water Conc. WW Master Plan Class Lvl 1 Treatment Plants and Facilities ☐ Water MP Right Sizing Class Lvl 2 ☐ Reliability/Redundancy Springwells Class Lvl 3 ☐ NEWTP Repurposing **Multiple Counties** Location **Project New To CIP** 50.6 Water production flow metering device **Project Engineer/Manager** Jorge Nicolas **Director** Grant Gartrell **Project Score** Problem Statement Existing water production flow meters need to be rehabilitated to place back into reliable and accurate service. Scope of Work / Project Northeast Water Plant: rehabilitate 4 venturi meters, associated vaults, and replace 4 isolation gate Alternatives valves. Springwells Water Plant: rehabilitate 7 venturi meters and associated vaults. Southwest Water Plant replace 4 venturi meters with new, including rehabilitation of the existing vaults. Other Important Info Challenges: Removing and replacing existing meters in original piping requires isolation using existing yard piping and valving.

| CIP Alias | FY16 | FY17  | FY18  | FY19  | FY20  | FY21  | FY22 | FY23 | FY24 | FY25 | FY26 | Total  | 5-Yr Total |  |
|-----------|------|-------|-------|-------|-------|-------|------|------|------|------|------|--------|------------|--|
| 2021      | 0    | 0     | 0     | 6,333 | 2,149 | 0     | 0    | 0    | 0    | 0    | 0    | 8,482  | 0          |  |
| 2020      | 0    | 0     | 3,445 | 3,561 | 80    | 19    | 0    | 0    | 0    | 0    | 0    | 7,105  | 99         |  |
| 2019      | 0    | 186   | 704   | 2,506 | 2,506 | 1,257 |      |      |      | 0    | 0    | 7,159  | 6,269      |  |
| 2018      |      | 1,000 | 8,800 | 2,100 | 1,000 |       |      |      | 0    | 0    | 0    | 12,900 | 11,900     |  |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

**Project Title** Springwells Water Treatment Plant, Administration Building Improvements & Underground Fire Protection Loop

**Project Status** Active

Water Class Lvl 1

Treatment Plants and Facilities Class Lvl 2

Springwells Class LvI 3

Wayne County - Outside Detroit Location

□ Innovation

Conc. WW Master Plan

☐ Water MP Right Sizing

☐ Reliability/Redundancy

□ NEWTP Repurposing

**Project New To CIP** 



Outdated electrical outlets

**Project Engineer/Manager** Peter Fromm

**Director** Grant Gartrell

## **Project Score**

67.4

Problem Statement Existing administration building is nearly 90 years old with many of its facilities being original. The building needs architectural, plumbing and electrical improvements. Improvements will provide reliable fire protection to all plant facilities, replace non-functioning isolation valves and hydrants, provide fire system backflow protection, and bring the fire system into conformance with the requirements of the Dearborn Fire Marshal.

Scope of Work / Project The work includes, but not necessarily limited to, removal and replacement of the existing plumbing Alternatives piping, fittings, valves, plumbing fixtures, and any other necessary accessories. The existing underground fire protection line loops the Pump, Switch, Boiler and Turbine houses and is supplied water off the high lift headers in the Pump House Header Vault. The supply does not currently have backflow prevention and several branches off the loop used to feed an irrigation system serving the grassy areas covering the reservoirs, 1930 Sed. Basin and 1958 Sed. Basin. Isolation valves and fire hydrants are non-functioning and are beyond their useful life, and the old cast iron piping is susceptible to frequent breaks.

Other Important Info The project was first identified in the November 2002 Needs Assessment completed by Hazen & Sawyer under CS-1304. The opinion of probable construction at that time for just replacing the existing piping was \$1,076,400.

> Project History: The fire loop and appurtenances are original to the existing plant commissioned around 1930. The loop crosses the construction staging area (blue tarps shown in the Project Map from Contract SP-563) in the northeast corner of the site and has been exposed to heavy construction traffic over the years.

> Challenges: . All plumbing needs to be replaced, the majority of which is existing walls. The underground facilities (e.g., electrical duct banks, gas service mains, fiber optic, tunnels, conduits, major pipelines, etc.) at Springwells have been modified several times since initially being commissioned around 1930.

> > VIII-31

Project Title Springwells Water Treatment Plant, Administration Building Improvements & Underground Fire Protection Loop

The new fire loop will cross a lot of buried utilities and structures, and identification of these facilities and showing them accurately in Contract Documents will be critical to minimizing interruptions/complications during construction. Even then, with all of the underground utilities between the Pump House and Administration Building, and between the Machine Shop/Garage and the 1930 Mixing Chamber, surprises during construction will be difficult to avoid.

|           |      | •    |      |      | •     |       | -     |       |      |      |      |       |            |
|-----------|------|------|------|------|-------|-------|-------|-------|------|------|------|-------|------------|
| CIP Alias | FY16 | FY17 | FY18 | FY19 | FY20  | FY21  | FY22  | FY23  | FY24 | FY25 | FY26 | Total | 5-Yr Total |
| 2021      | 0    | 0    | 0    | 264  | 417   | 2,302 | 4,198 | 1,515 | 0    | 0    | 0    | 8,696 | 8,015      |
| 2020      | 0    | 0    |      | 30   | 413   | 2,258 | 3,820 | 1,604 | 0    | 0    | 0    | 8,125 | 8,095      |
| 2019      | 0    |      |      | 30   | 413   | 2,258 | 3,820 | 1,604 |      | 0    | 0    | 8,125 | 8,125      |
| 2018      |      |      |      | 300  | 1,700 |       |       |       | 0    | 0    | 0    | 2,000 | 2,000      |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

**Project Title** Springwells Water Treatment Plant Replacement of 1958 Rapid Mixing Units

**Project Status** Closed Innovation Water Conc. WW Master Plan Class Lvl 1 Treatment Plants and Facilities ☐ Water MP Right Sizing Class Lvl 2 ☐ Reliability/Redundancy Springwells Class Lvl 3 □ NEWTP Repurposing Wayne County - Outside Detroit Location **Project New To CIP** 69.4



Springwells WTP

**Project Engineer/Manager** Peter Fromm

**Director** Grant Gartrell

**Project Score** 

Problem Statement Existing rapid mixing units at the 1958 treatment train are not operable and are needed for effective water treatment at Springwells.

Scope of Work / Project The work includes removal and replacement of all of the four rapid mixers including electrical, Alternatives mechanical and structural components.

Other Important Info The construction contract, CON-251, was awarded and the notice to proceed issued to J.F. Cavanaugh on May 15, 2018. CON-251 is scheduled for completion in July 2019.

> Challenges: Work requires treatment trains to be shut down to complete the installation/replacement, so coordination with operations and overall system demands required.

| I TOJECT EXP | JC113C3 C | ompaic | <b>u</b> 10 1 1 <b>c v</b> | .005 011 1 | , si | go.c | J GIC III Y | , , , 0 0 0 0 , |      |      |      |       |            |
|--------------|-----------|--------|----------------------------|------------|------------------------------------------|------|-------------|-----------------|------|------|------|-------|------------|
| CIP Alias    | FY16      | FY17   | FY18                       | FY19       | FY20                                     | FY21 | FY22        | FY23            | FY24 | FY25 | FY26 | Total | 5-Yr Total |
| 2021         | 0         | 0      | 0                          | 1,017      | 14                                       | 0    | 0           | 0               | 0    | 0    | 0    | 1,031 | 0          |
| 2020         | 0         | 0      | 177                        | 886        | 61                                       | 0    | 0           | 0               | 0    | 0    | 0    | 1,124 | 61         |
| 2019         | 0         | 104    | 123                        | 1,284      | 211                                      |      |             |                 |      | 0    | 0    | 1,722 | 1,495      |
| 2018         |           | 100    | 875                        | 275        |                                          |      |             |                 | 0    | 0    | 0    | 1,250 | 1,150      |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

Class Lvl 3

Location

**Project Title** Springwells Water Treatment Plant Powdered Activated Carbon System Improvements

**Project Status** Future Planned Innovation Water Conc. WW Master Plan Class Lvl 1 Treatment Plants and Facilities ☐ Water MP Right Sizing Class Lvl 2 Springwells

☐ Reliability/Redundancy

□ NEWTP Repurposing

**Project New To CIP** 

**Project Engineer/Manager** Justin Kietur

**Director** Grant Gartrell

Wayne County - Outside Detroit





Springwells WTP

## **Project Score**

Problem Statement Powdered activated carbon (PAC) is added to the treatment process to control taste and odor issues in the raw water supply. Taste and odor issues are infrequent, but the existing PAC system is difficult to operate and maintain when called upon for use. A more operator friendly and easier to maintain system is needed. The plant is only able to feed PAC through extraordinary measures due to deficiencies in the system. These extraordinary measures create additional operations and maintenance expense and inefficiencies that should be corrected in the long term. If raw water quality deteriorates unexpectedly and taste and odor causing compound concentrations steadily increase replacement of the PAC system at an earlier date would be warranted.

Scope of Work / Project Replacement of the existing powdered activated carbon system with a new system of a design that Alternatives provides improved operations and maintainability when PAC dosing is needed.

The scope of work will generally include the following:

- 1) Repair of concrete and piping at the dry carbon delivery station and replacement of dust collectors.
- 2)Inspection of underground carbon slurry tanks and repair of damage to concrete and fiberglass lining.
- 3) Replacement of PAC transfer pumps and associated piping, valves and controls.
- 4) Replacement of PAC metering pumps and associated piping, valves and controls.

| CIP Alias | FY16 | FY17 | FY18 | FY19 | FY20 | FY21  | FY22 | FY23 | FY24  | FY25  | FY26  | Total | 5-Yr Total |
|-----------|------|------|------|------|------|-------|------|------|-------|-------|-------|-------|------------|
| 2021      | 0    | 0    | 0    | 0    | 0    | 0     | 0    | 0    | 0     | 63    | 4,125 | 4,188 | 63         |
| 2020      | 0    | 0    |      | 0    | 0    | 0     | 0    | 0    | 0     | 3,938 | 0     | 3,938 | 0          |
| 2019      | 0    |      |      |      |      |       |      |      | 3,939 | 0     | 0     | 3,939 | 0          |
| 2018      |      |      |      |      | 900  | 2,000 |      |      | 0     | 0     | 0     | 2,900 | 2,900      |

Project Title Springwells Water Treatment Plant Powdered Activated Carbon System Improvements

\* In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

**Project Title** Springwells Water Treatment Plant 1930 Sedimentation Basin Sluice Gates, Guides & Hoists Improvements

**Project Status** Active □ Innovation Water Conc. WW Master Plan Class Lvl 1 Treatment Plants and Facilities ☐ Water MP Right Sizing

Class Lvl 2 ☐ Reliability/Redundancy Springwells Class Lvl 3

☐ NEWTP Repurposing Wayne County - Outside Detroit Location

**Project New To CIP** 



**Project Engineer/Manager** Peter Fromm

**Director** Grant Gartrell

# **Project Score**

52.8

**Problem Statement** Existing sedimentation basin gates, guides and hoists are early 1930s and are in need of replacement.

Also, operation of the sluice gates in their existing condition and design does not meet current best

practices for safe maintenance and operation.

Scope of Work / Project This CIP project is being delivered under a design-build project delivery method and generally includes **Alternatives** the following scope of work:

- 1. Demolition of the existing eight (8) 1930 sedimentation basins gates, guides, and hoist.
- 2. Installation of the new eight (8) 1930 sedimentation basins gates, guides, and actuators.
- 3. Concrete restoration within the four (4) 1930 sedimentation basins.
- 4. Concrete repairs to the air vents, access ramp, access hatches on top of the 1930 sedimentation basin.
- 5. Electrical upgrades to the four (4) sedimentation basin gate houses.

Other Important Info Challenges: Work will require the 1930's plant to be shutdown during three low demand seasons to complete the work. This contractor will need to coordination with CON-170: Sludge Removal and Disposal for cleaning the sedimentation basins, SP-563, CON-253, and other construction projects to ensure that the system can handle the long duration shutdown.

| CIP Alias | FY16 | FY17 | FY18  | FY19  | FY20  | FY21   | FY22  | FY23 | FY24 | FY25 | FY26 | Total  | 5-Yr Total |
|-----------|------|------|-------|-------|-------|--------|-------|------|------|------|------|--------|------------|
| 2021      | 0    | 0    | 0     | 178   | 3,386 | 10,327 | 331   | 19   | 0    | 0    | 0    | 14,241 | 10,677     |
| 2020      | 0    | 0    |       | 442   | 4,153 | 6,830  | 5,697 | 3    | 0    | 0    | 0    | 17,125 | 16,683     |
| 2019      | 0    |      |       | 424   | 4,153 | 6,830  | 5,697 | 3    |      | 0    | 0    | 17,107 | 17,107     |
| 2018      |      |      | 1,200 | 2,000 | 4,000 | 300    |       |      | 0    | 0    | 0    | 7,500  | 7,500      |

Project Title Springwells Water Treatment Plant 1930 Sedimentation Basin Sluice Gates, Guides & Hoists Improvements

\* In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

Proiect Title **SPW WTP Service Area Redundancy Study** 

**Project Status** Closed □ Innovation

Class Lvl 1

Water

Treatment Plants and Facilities Class Lvl 2

Springwells Class Lvl 3

Wayne County - Outside Detroit Location

Conc. WW Master Plan

✓ Water MP Right Sizing

✓ Reliability/Redundancy

☐ NEWTP Repurposing

**Project New To CIP** 



**78** 



**Project Engineer/Manager** Timothy Kuhns

**Director** Grant Gartrell

Problem Statement Hydraulic analysis and Evaluation of options to maintain adequate pressure at Springwell's high pressure district. FROM 132010: Construction of West Service Center Division Valves is needed to convey Lake Huron flows through the West Service Center to the Springwells high service area while the Springwells raw water tunnel is out of service for repairs. Construction of active bypass around the Newburgh Pump Station.

Scope of Work / Project This study involves hydraulic analyses and evaluation of options to transmit finished water from the Lake Alternatives Huron Water Treatment Plant through the West Service Center in order to provide finished water to the Springwells Water Treatment Plant's high-pressure district. FROM 132010: Lake Huron WTP needs to provide flows to the Springwells high service area while the Springwells raw water tunnel is out of service for repair.

Other Important Info Challenges: N/A - Under Procurement. FROM 132010: Coordination with operations critical meet testing of existing valves. Isolation, shutdown and operation of Lake Huron and Springwells WTPs, North Service Center, and other facilities.

| FY16 | FY17           | FY18                | FY19  | FY20                                | FY21                                    | FY22                                        | FY23                                                                                                                            | FY24                                                                                                                                                    | FY25                                                    | FY26                                                                                                                                                                                  | Total                                                                                                                                                                                                   | 5-Yr Total                                                                                                                                                                                                                          |
|------|----------------|---------------------|-------|-------------------------------------|-----------------------------------------|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0    | 0              | 0                   | 311   |                                     |                                         | 0                                           | 0                                                                                                                               |                                                                                                                                                         | 0                                                       | 0                                                                                                                                                                                     |                                                                                                                                                                                                         | 0 11 10101                                                                                                                                                                                                                          |
| 0    | 0              | 311                 | 0     |                                     |                                         | 0                                           | 0                                                                                                                               |                                                                                                                                                         | 0                                                       | 0                                                                                                                                                                                     |                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                   |
| 0    | 193            | -                   | J     | J                                   | · ·                                     | ŭ                                           | J                                                                                                                               | J                                                                                                                                                       | 0                                                       | 0                                                                                                                                                                                     |                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                   |
| _    |                |                     |       |                                     |                                         |                                             |                                                                                                                                 | 0                                                                                                                                                       | 0                                                       | 0                                                                                                                                                                                     |                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                   |
|      | FY16<br>0<br>0 | 0 0<br>0 0<br>0 193 | 0 0 0 | 0 0 0 311<br>0 0 311 0<br>0 193 145 | 0 0 0 311 0<br>0 0 311 0 0<br>0 193 145 | 0 0 0 311 0 0<br>0 0 311 0 0 0<br>0 193 145 | 0     0     0     311     0     0     0       0     0     311     0     0     0     0       0     193     145     0     0     0 | 0     0     0     311     0     0     0     0       0     0     311     0     0     0     0     0       0     193     145     0     0     0     0     0 | 0 0 0 311 0 0 0 0 0<br>0 0 311 0 0 0 0 0 0<br>0 193 145 | 0     0     0     311     0     0     0     0     0     0       0     0     311     0     0     0     0     0     0     0       0     193     145     0     0     0     0     0     0 | 0     0     0     311     0     0     0     0     0     0     0       0     0     311     0     0     0     0     0     0     0     0     0       0     193     145     0     0     0     0     0     0 | 0     0     0     0     0     0     0     0     0     0     0     0     311       0     0     311     0     0     0     0     0     0     0     0     0     311       0     193     145     0     0     0     0     0     0     338 |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

**Project Title** Springwells Water Treatment Plant, Yard Piping and High-Lift Header Improvements

**Project Status** Future Planned

Water Class Lvl 1

Treatment Plants and Facilities Class Lvl 2

Springwells Class LvI 3

Wayne County - Outside Detroit Location

Project Engineer/Manager John McCallum

□ Innovation

Conc. WW Master Plan

☐ Water MP Right Sizing

✓ Reliability/Redundancy

☐ NEWTP Repurposing

**Project New To CIP** 

72.2



Springwells WTP - Pipe Main - Note the wood plug.

**Director** Grant Gartrell

## **Project Score**

**Problem Statement** Six (6) of the seven (7) 72-inch mains leaving the site are original to the 1930 plant construction and consist of riveted steel pipe material. Main No. 7 is a prestressed concrete cylinder pipe material installed in 1958. The steel mains are known to be leaking and are in need of replacement to maintain system. reliability. Additionally, isolation valves associated with the 72-inch mains need to be replaced because several are known to leak to the point where they are unable to isolate flow. It is suspected that the other large-diameter isolation valves are in similar poor condition. Other yard piping, including gravity sewers and miscellaneous utility piping are also 1930 and 1958 vintage and therefore require rehabilitation/renewal or replacement.

Scope of Work / Project This project would be delivered using in phases using multiple design-build contracts developed and **Alternatives** managed by AECOM under its CIP program management contract. The scope of work generally includes:

- 1. Replace and/or slip-line existing yard piping.
- 2. Replace and/or structurally reinforce high-lift header piping.
- 3. Replace existing isolation valves in the header vault.
- 4. Repace existing isolation valves in the yard piping.
- 5. Conduct site restoration work.
- B) Replace and/or renew/rehabilitate all high-lift header and yard piping. Note that the limits of yard piping replacement will extend to the fence line and out to the first valve outside the fence line as well as the 1930 pipe along Warren from Indiana to McDonald Avenue.
- C) This project also involves other site improvements, including replacement of access drives, construction of a new quard building, construction of trailer utility hook-up station, and other site miscellaneous site improvements.

Other Important Info This CIP will be delivered using a design-bid-build project delivery method. It is contemplated that there

Project Title Springwells Water Treatment Plant, Yard Piping and High-Lift Header Improvements

will be one, single design engineering services contract that will design multiple construction contracts. The construction of the project would be released in separate construction contract packages that coincide with the as-designed plan to sequence the construction to maintain adequate service/plant operation during construction. It is not known at this time the number of construction contract packages that will be required. This will be determined during the design of the project when the design consulting engineer is under contract. This CIP will be updated at that point when better information is available.

| CIP Alias | FY16 | FY17 | FY18 | FY19  | FY20  | FY21  | FY22  | FY23 | FY24    | FY25    | FY26   | Total   | 5-Yr Total |
|-----------|------|------|------|-------|-------|-------|-------|------|---------|---------|--------|---------|------------|
| 2021      | 0    | 0    | 0    | 4     | 0     | 1     | 46    | 608  | 9,409   | 11,958  | 90,587 | 112,613 |            |
| 2020      | 0    | 0    |      | 0     | 0     | 0     | 0     | 0    | 72      | 110,578 | 0      | 110,650 | 72         |
| 2019      | 0    |      |      |       |       |       |       |      | 110,129 | 0       | 0      | 110,129 | 0          |
| 2018      |      |      |      | 2,000 | 7,000 | 8,000 | 8,000 |      | 0       | 0       | 0      | 25,000  | 25,000     |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

**Project Title** Springwells Water Treatment Plant Steam, Condensate Return, and Compressed Air Piping Improvements

**Project Status** Active

Water Class Lvl 1

Treatment Plants and Facilities Class Lvl 2

Springwells Class LvI 3

Wayne County - Outside Detroit Location

**Director** Grant Gartrell

□ Innovation

Conc. WW Master Plan

☐ Water MP Right Sizing

☐ Reliability/Redundancy

☐ NEWTP Repurposing

**Project New To CIP** 





SP-563 – Rehabilitated 1958 Pipe Gallery (in progress)

Project Engineer/Manager Brian VanHall

### **Project Score**

Problem Statement The steam, condensate return, compressed air, and natural gas piping systems at the Springwells Water Treatment Plant need to be replaced to ensure overall reliability of the plant. These systems are original to the plant (i.e. from 1930s or 1950s) and are beyond their useful life. These existing steam and condensate systems are in poor condition and require multiple repairs each heating season due to frequent failures. These repairs often require taking the entire steam system out of service which places equipment at risk of freezing due to exposure to low temperatures. Some failures have occurred in difficult areas to access and have not been repaired over many seasons because they are cost prohibitive to repair. The active steam, condensate, and air leaks require that the steam generators and air compressors run at higher loads to keep up with demand, resulting in additional stress on this equipment and is not energy efficient. Leaking steam and condensate contribute to significant moisture and condensation within the facility, which creates ideal conditions for corrosion of other aging plant infrastructure critical for continued water production. Failure of these lines is unsafe to nearby personnel since steam and condensate could cause severe burns, and high pressure lines would result in fast moving air that can cause injury.

Scope of Work / Project This project is being delivered using a design-bid-build project delivery method. This engineering services **Alternatives** contract involves designing a new, more energy-efficient steam heating system for the entire Springwells Water Treatment Plant, including all steam unit heaters, steam piping, condensate return piping, condensate return pumping stations, steam pressure reducing valves, and appurtenances. This project also involves replacing the compressed air piping in the plant used for service air. Once completed, the project will provide energy savings by eliminating extensive steam and condensate leaking currently inherent in the antiquated system. This project includes design and construction administration (CS-1671) and construction (CON-252) to replace the leaking steam piping, condensate return piping and compressed air piping throughout the Springwells WTP. The scope of work includes replacing unit

Project Title Springwells Water Treatment Plant Steam, Condensate Return, and Compressed Air Piping Improvements

> heaters, radiators, condensate return pump stations, pressure reducing valves, regulators, and heating system appurtenances throughout the plant. Once completed, the project will provide energy savings by eliminating extensive steam and condensate leaking currently inherent in the antiquated system.

Other Important Info Many components of the existing system are original to the existing heating system, are not functioning and need to be demolished/removed. Seasonal work and sequencing with the heating season is required.

| CIP Alias | FY16 | FY17 | FY18  | FY19  | FY20  | FY21  | FY22  | FY23 | FY24 | FY25 | FY26 | Total  | 5-Yr Total |
|-----------|------|------|-------|-------|-------|-------|-------|------|------|------|------|--------|------------|
| 2021      | 0    | 0    | 0     | 2,373 | 6,948 | 6,932 | 6,932 | 713  | 0    | 0    | 0    | 23,898 | 14,577     |
| 2020      | 0    | 0    | 473   | 3,109 | 5,392 | 7,754 | 8,261 | 0    | 0    | 0    | 0    | 24,989 | 21,407     |
| 2019      | 0    | 280  | 450   | 1,406 | 4,824 | 4,654 | 7     |      |      | 0    | 0    | 11,621 | 10,891     |
| 2018      |      | 300  | 3,450 | 2,500 |       |       |       |      | 0    | 0    | 0    | 6,250  | 5,950      |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

Project Title SPW WTP Water Treatment Plant 1930 Filter Building-Roof Replacement

**Project Status** Active Innovation Water Conc. WW Master Plan Class Lvl 1 Treatment Plants and Facilities ☐ Water MP Right Sizing Class Lvl 2 ☐ Reliability/Redundancy Springwells Class Lvl 3 □ NEWTP Repurposing Wayne County - Outside Detroit Location **Project New To CIP** 61 Filter Building roof **Project Engineer/Manager** Paula Anderson **Director** Paula Anderson **Project Score** Problem Statement The existing roof over the 1930 filters is leaking in places and poses water quality concerns due to roof leaks. Scope of Work / Project This project encompasses replacement of the existing 1930 Filter Building roofing system, including the Alternatives built-up roofing material, flashing, roof drains/conductors and sealing cap stones to prevent water from penetrating the building envelop and causing water damage. Construction activity under Contract SP-563 in 2014-2015 revealed that water damage has been on-going and is causing clerestory window lintel deterioration. Additionally, construction traffic under Contract SP-563 has shown the built-up material to be blistering and spongy. Other Important Info Challenges: Seasonal construction work, and construction will require working around new rooftop

Project Expenses Compared to Previous CIP Versions (All figures are in \$1,000's)

| CIP Alias | FY16 | FY17  | FY18  | FY19  | FY20 | FY21 | FY22 | FY23 | FY24 | FY25 | FY26 | Total | 5-Yr Total |
|-----------|------|-------|-------|-------|------|------|------|------|------|------|------|-------|------------|
| 2021      | 0    | 0     | 0     | 3,911 | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 3,911 | 0          |
| 2020      | 0    | 0     | 1,124 | 2,788 | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 3,912 | 0          |
| 2019      | 0    |       | 486   | 2,420 |      |      |      |      |      | 0    | 0    | 2,906 | 2,420      |
| 2018      |      | 3,000 |       |       |      |      |      |      | 0    | 0    | 0    | 3,000 | 0          |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

equipment installed under SP-563.

**Project Title** Springwells Water Treatment Plant, Reservoir Fill Line Improvements

**Project Status** Active

Water Class Lvl 1

Treatment Plants and Facilities Class Lvl 2

Springwells Class Lvl 3

Wayne County - Outside Detroit Location

Innovation

Conc. WW Master Plan

✓ Water MP Right Sizing

✓ Reliability/Redundancy

✓ NEWTP Repurposing

**Project New To CIP** 



Springwells WTP

Project Engineer/Manager Khader Hamad

**Director** Grant Gartrell

## **Project Score**

**77.2** 

Problem Statement A new reservoir fill line to the Springwells Water Treatment Plant is needed to provide finished water to the Springwells high service area from the GLWA Southwest and Waterworks Park treatment plants while the Springwells raw water tunnel is rehabilitated under a separate contract. The new reservoir fill line will allow the Springwells high-lift pumping facility to operate and feed its high-pressure district while the treament works at Springwells are temporairly out of service. For example, there are times when the lowlift pumps need to be shutdown to allow for underwater inspection of the low-lift pump isolation gates and other raw water conveyance infrastructure upstream of the low-lift pumping station at Springwells.

Scope of Work / Project This project is being delivered under a design-bid-build project delivery method. The scope of work Alternatives generally includes:

- 1. Designing the project.
- 2. Constructing the new reservoir fill piping, flow control energy disappaiting valves, valve vault, and appurtenances.
- 3. Connecting new piping to existing 72-inch diameter steel water transmission main.
- 4. Commissioning and testing the new reservoir filling facility.
- 5. Restoring the site.

Other Important Info Potential delays due to isolation of 1926 main and coordination with CON-133 (WTP metering) requiring expercising and using old valves. Control of the reservoir filling operation by SCC with significant roles played by SWP, WWP, NEP and SPP operators.

## Project Expenses Compared to Previous CIP Versions (All figures are in \$1,000's)

| CIP Alias | FY16 | FY17 | FY18 | FY19  | FY20  | FY21 | FY22 | FY23 | FY24 | FY25 | FY26 | Total | 5-Yr Total |
|-----------|------|------|------|-------|-------|------|------|------|------|------|------|-------|------------|
| 2021      | 0    | 0    | 0    | 2,830 | 1,991 | 0    | 0    | 0    | 0    | 0    | 0    | 4,821 | 0          |
| 2020      | 0    | 0    | 332  | 2,849 | 1,551 | 0    | 0    | 0    | 0    | 0    | 0    | 4,732 | 1,551      |

VIII-44

Project Title Springwells Water Treatment Plant, Reservoir Fill Line Improvements

| CIP Alias | FY16 | FY17 | FY18  | FY19  | FY20  | FY21 | FY22 | FY23 | FY24 | FY25 | FY26 | Total | 5-Yr Total |
|-----------|------|------|-------|-------|-------|------|------|------|------|------|------|-------|------------|
| 2019      | 0    | 120  | 181   | 2,469 | 3,656 | 61   | 21   |      |      | 0    | 0    | 6,508 | 6,207      |
| 2018      |      | 200  | 3,300 | 4,000 |       |      |      |      | 0    | 0    | 0    | 7,500 | 7,300      |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

**Project Title** Springwells Water Treatment Plant Emergency Grating Replacement

**Project Status** Closed Innovation Water Class Lvl 1 Treatment Plants and Facilities Class Lvl 2 Springwells Class Lvl 3

Wayne County - Outside Detroit Location

Project Engineer/Manager Erich Klun



☐ Reliability/Redundancy

☐ NEWTP Repurposing **Project New To CIP** 



Deteriorated support beams holding up Low Lift Station. Dewatering and Sump Pumps at Elev. 42'-0" (left). Deteriorated grating and access ship's ladder in Low Lift Station - Looking down at Elev. 50'-0" and 42'-0" from Elev. 62'-0" (right).

**Director** Grant Gartrell

## **Project Score**

100

Problem Statement Emergency replacement of original 1930 steel grating and structural steel in the Low Lift Station, Pump House Cable Vault and Garage basement (5 locations total).

Scope of Work / Project Emergency replacement of original 1930 steel grating and structural steel in the Low Lift Station, Pump Alternatives House Cable Vault and Garage basement (5 locations total).

Other Important Info Replacement of structural steel in the Low Lift Station required the demolition of pump Nos. 9 and 10, as well as the replacement of sump pump \$1 and \$2.

> Challenges: Maintaining system operations during construction and eliminating the potential for flooding the Low Lift Station during construction. LOTO of low lift pumping units for diver work associated with plugging the suction line to pump Nos. 9 and 10.

Project History: Work was originally included in CS-1474, but due to reconsideration of system demands and putting SP-569 on hold, the structural improvements were necessary to protect the safety of operators and others working on-site.

Project Expenses Compared to Previous CIP Versions (All figures are in \$1.000's)

| •         |      | •    |      |       | •    |      | •    |      |      |      |      |       |            |
|-----------|------|------|------|-------|------|------|------|------|------|------|------|-------|------------|
| CIP Alias | FY16 | FY17 | FY18 | FY19  | FY20 | FY21 | FY22 | FY23 | FY24 | FY25 | FY26 | Total | 5-Yr Total |
| 2021      | 0    | 0    | 0    | 3,366 | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 3,366 | 0          |

VIII-46

Project Title Springwells Water Treatment Plant Emergency Grating Replacement

| CIP Alias | FY16 | FY17 | FY18  | FY19 | FY20 | FY21 | FY22 | FY23 | FY24 | FY25 | FY26 | Total | 5-Yr Total |
|-----------|------|------|-------|------|------|------|------|------|------|------|------|-------|------------|
| 2020      | 0    | 0    | 2,737 | 729  | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 3,466 | 0          |
| 2019      | 0    | 254  | 2,507 | 11   |      |      |      |      |      | 0    | 0    | 2,772 | 11         |
| 2018      |      | 500  | 2,000 |      |      |      |      |      | 0    | 0    | 0    | 2,500 | 2,000      |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

**Project Title** Springwells Water Treatment Plant 1958 Settled Water Conduits and Loading Dock Concrete Pavement

**Project Status** Future Planned □ Innovation Water Conc. WW Master Plan Class Lvl 1 Treatment Plants and Facilities ☐ Water MP Right Sizing Class Lvl 2 ☐ Reliability/Redundancy Springwells Class Lvl 3 ☐ NEWTP Repurposing Wayne County - Outside Detroit Location **Project New To CIP** 

**Project Engineer/Manager** Peter Fromm

**Director** Grant Gartrell

## **Project Score**

**52** 

**Problem Statement** The existing concrete pavement that covers the 1958 settled water conduits has failed with significant concrete deterioration and corrosion of the reinforcement embedded steel. The condition of the concrete pavement has become much worse over the past 12 months. The condition so bad that the concrete is friable and crumbling in many major areas. The conditions in certain areas are such that there are now potential safety hazards to those who have to walk on the pavement. The plant chemists have to walk some of the areas to obtain settled water samples at times. The concrete pavement over the 1958 settled water conduits also serves as a service road that provides vehicular access to the 1958 filter building. This paved service road also serves as the roof to the settled water conduit that conveys settled water to the 1958 filter train at Springwells.

Scope of Work / Project This CIP project is being delivered under a design-bid-build project delivery method and generally **Alternatives** includes the following scope of work:

- 1. Demolition of the existing concrete pavement that covers the 1958 settled water conduit and the loading dock.
- 2. Placement of new concrete pavement that covers the 1958 settled water conduit and the loading dock.
- 3. Demolition and installation of handrail around the 1958 settled water conduit.

Other Important Info Challenge: Equipment limitations on the settled water conduit and not damaging the structure concrete of the settled water conduit.

# Project Expenses Compared to Previous CIP Versions (All figures are in \$1,000's)

| CIP Alias | FY16 | FY17 | FY18 | FY19 | FY20 | FY21  | FY22 | FY23 | FY24 | FY25 | FY26 | Total | 5-Yr Total |
|-----------|------|------|------|------|------|-------|------|------|------|------|------|-------|------------|
| 2021      | 0    | 0    | 0    | 0    | 94   | 1,663 | 7    | 0    | 0    | 0    | 0    | 1,764 | 1,670      |
| 2020      | 0    | 0    |      |      | 206  | 656   |      |      |      |      | 0    | 862   | 862        |

VIII-48

Project Title Springwells Water Treatment Plant 1958 Settled Water Conduits and Loading Dock Concrete Pavement

\* In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

Project Title Springwells Water Treatment Plant Flocculator Drive Replacements

 Project Status
 Future Planned
 ☐ Innovation

 Class Lvl 1
 Water
 ☐ Conc. WW Master Plan

 Class Lvl 2
 Treatment Plants and Facilities
 ☐ Water MP Right Sizing

 Class Lvl 3
 Springwells
 ☐ Reliability/Redundancy

 Location
 Wayne County - Outside Detroit
 ☐ NEWTP Repurposing

 ☐ Project New To CIP



Project Engineer/Manager Peter Fromm

**Director** Grant Gartrell

### **Project Score**

47

**Problem Statement** The existing flocculator drives, motors, and control panels are beyond useful service life.

**Scope of Work / Project** This CIP will be delivered under a design-bid-build project delivery model. The scope of work will **Alternatives** generally include the following:

- 1. Replacement of the existing flocculator drives, motors, and control panels.
- 2. Replacement of all drive shaft bearings and associated grease lines.
- 3. Replacement of access doors between the flocculator chambers
- 4. Replacement of ladder rungs into all flocculators.
- 5. Improvement of flocculation system related instrumentation and controls.

Other Important Info Implementation of this CIP project is being sequenced and coordinated with another Springwells WTP CIP project, namely the 1930 Sedimentation Basins Sluice Gate Improvements Project.

| CIP Alias | FY16 | FY17 | FY18 | FY19 | FY20 | FY21 | FY22 | FY23  | FY24  | FY25 | FY26 | Total | 5-Yr Total |
|-----------|------|------|------|------|------|------|------|-------|-------|------|------|-------|------------|
| 2021      | 0    | 0    | 0    | 0    | 29   | 315  | 635  | 2,265 | 6,035 | 17   | 0    | 9,296 | 9,267      |
| 2020      | 0    | 0    |      |      |      |      | 10   | 2,314 | 4     |      | 0    | 2,328 | 2,328      |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

**Project Title** Springwells Water Treatment Plant - Service Building Electrical Substation and Miscellaneous Improvements

**Project Status** Future Planned

Water Class Lvl 1

Treatment Plants and Facilities Class Lvl 2

Springwells Class LvI 3

Wayne County - Outside Detroit Location

Innovation

Conc. WW Master Plan

☐ Water MP Right Sizing

☐ Reliability/Redundancy

☐ NEWTP Repurposing

✓ Project New To CIP





**Project Engineer/Manager** Justin Kietur **Director** Terry Daniel

# **Project Score**

**Problem Statement** The electrical substation located inside the Service Building provides electrical service to the entire service building including the filter wash water pumping units. The existing electrical substation is a double-ended unit that has experienced corrosion to its interior components and electrical cables. As a result the substation does not automatically switch-over during power trips and requires manual switchover, which defeats the purpose of the automatic switch-over feature of the substation. This substation provides power to the filter wash water pumps and as a result when there are power disruptions associated with the substation, the plant is not able to wash filters. This situation causes water production issues at the plant whenever there are failures of the substation. Although certain components (e.g. breakers) of the electrical substation can be replaced, there are corroded internal electrical circuits, cables and contactors that cannot be replaced and are still causing problems with the substation's performance.

> The electrical breaker panel located in the 1930 filter building is original construction and is severely corroded. This panel supplies power to a portion of the 1930 Filter Building and its failure would result in loss of water production capacity.

The concrete area of the phosphoric acid outdoor fill station is deterioated and the water service to the associated emergency eye-wash station suffers frequent breaks. The eye wash station is required to be in service for phosphoric acid deliveries and repair requires working in the tight confines of a pipe chase.

# **Alternatives** include:

Scope of Work / Project Project will be delivered using a design-build project delivery. The scope of improvements will generally

- 1. Replacement of the electrical substation in the 1958 Service Building
- 2. Connection of replacement electrical substation to Ovation for status monitoring
- 3. Replacement of electrical panel in 1930 plant and new conduit and cable runs to the associated

Project Title Springwells Water Treatment Plant - Service Building Electrical Substation and Miscellaneous Improvements

equipment

- 4. Rehab of masonry on exterior of phosphoric acid fill station
- 5. Insulation of piping and pipe chase behind phosphoric acid fill station
- 6. Installiation of tank level gauges and alarms at fill station to prevent overfilling of chemical storage

tanks

| CIP Alias | FY16 | FY17 | FY18 | FY19 | FY20 | FY21 | FY22 | FY23  | FY24 | FY25 | FY26 | Total | 5-Yr Total |
|-----------|------|------|------|------|------|------|------|-------|------|------|------|-------|------------|
| 2021      | 0    | 0    | 0    | 0    | 0    | 0    | 90   | 1,378 | 40   | 0    | 0    | 1,508 | 1,508      |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

Proiect Title Water Works Park Water Treatment Plant Yard Piping, Valves and Venturi Meters Replacement

**Project Status** Active

Water Class Lvl 1

Treatment Plants and Facilities Class Lvl 2

Class Lvl 3 Water Works Park

City of Detroit Location

☐ Innovation

Conc. WW Master Plan

✓ Water MP Right Sizing

✓ Reliability/Redundancy

✓ NEWTP Repurposing

 $^{oxed}$  Project New To CIP



Pumps and Piping

**Project Engineer/Manager** Timothy Kuhns

**Director** Grant Gartrell

# **Project Score**

65.4

Problem Statement Most of the existing yard piping is greater than 100 years old and requires replacement with new piping installed in a more efficient configuration.

Scope of Work / Project This project is being delivered using a design-bid-build project delivery method. The scope of work Alternatives generally includes:

- 1. Designing the project.
- 2. Removing existing yard piping, valves and buried venturi meters and related vaults.
- 3. Constructing new yard piping, valves, water production flow meters, buried valve and meter vaults, and related system equipment.
- 4. Connecting to existing transmission main piping.
- 5. Testing and commissioning the new main, valves and water production flow metering equipment.
- 6. Restoring the site.

Other Important Info This project is being coordinated with the new Waterworks Park to Northeast Transmission Main.

Challenges: Complicated sequence of construction, and demands of DWSD must be maintained along with coordination transmission system between Water Works Park and Northeast WTPs. Condition of existing valves required to complete the work is unknown. Complex construction staging is accounted for in the design to avoid loss of service and delays to the construction contract.

| CIP Alias | FY16 | FY17 | FY18 | FY19  | FY20   | FY21   | FY22             | FY23   | FY24   | FY25  | FY26 | Total  | 5-Yr Total |
|-----------|------|------|------|-------|--------|--------|------------------|--------|--------|-------|------|--------|------------|
| 2021      | 0    | 0    | 0    | 1,760 | 251    | 5,462  | 13,349           | 21,478 | 20,883 | 8,836 | 0    | 72,019 | 70,008     |
| 2020      | 0    | 0    | 682  | 899   | 17,333 | 17,333 | 17,333           | 0      | 0      | 0     | 0    | 53,580 | 51,999     |
| 2019      | 0    | 9    | 412  | 968   | 20,771 | 34,466 | 14,397<br>VIII-5 | 28     |        | 0     | 0    | 71,051 | 70,630     |


Project Title Water Works Park Water Treatment Plant Yard Piping, Valves and Venturi Meters Replacement

| CIP Alias | FY16 | FY17 | FY18  | FY19   | FY20   | FY21 | FY22 | FY23 | FY24 | FY25 | FY26 | Total  | 5-Yr Total |
|-----------|------|------|-------|--------|--------|------|------|------|------|------|------|--------|------------|
| 2018      |      |      | 5,500 | 27,900 | 20,500 |      |      |      | 0    | 0    | 0    | 53,900 | 53,900     |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

Proiect Title Water Works Park Water Treatment Plant Comprehensive Condition Assessment

**Project Status** Active Innovation Water Conc. WW Master Plan Class Lvl 1 Treatment Plants and Facilities ☐ Water MP Right Sizing Class Lvl 2 ☐ Reliability/Redundancy Water Works Park Class Lvl 3 ☐ NEWTP Repurposing City of Detroit Location **Project New To CIP** 35.6



Waterworks Park WTP

Project Engineer/Manager Michael Dunn

**Director** Grant Gartrell

# **Project Score**

Problem Statement A condition assessment of Waterworks Park Water Treatment Plant has not been completed since the

2004 reconstruction. Condition assessment is needed to identify critical assets in need of repair or

replacement.

Scope of Work / Project A condition assessment of Waterworks Park Water Treatment Plant has not been completed since the

Alternatives 2004 reconstruction. Continued and periodic inspection of the Water Treatment Plant is needed to

maintain a reliable production system, especially given the reliance on Waterworks Park to provide finish

water to the Northeast Service Area.

Other Important Info Contract No. 147 with Hubbell, Roth & Clark is underway.

Challenges: Coordinating shutdowns required for condition assessment inspections.

|           |      | •    |      |      | •    | _    |      | •    |      |      |      |       |            |
|-----------|------|------|------|------|------|------|------|------|------|------|------|-------|------------|
| CIP Alias | FY16 | FY17 | FY18 | FY19 | FY20 | FY21 | FY22 | FY23 | FY24 | FY25 | FY26 | Total | 5-Yr Total |
| 2021      | 0    | 0    | 0    | 514  | 68   | 0    | 0    | 0    | 0    | 0    | 0    | 582   | 0          |
| 2020      | 0    | 0    | 440  | 262  | 153  | 0    | 0    | 0    | 0    | 0    | 0    | 855   | 153        |
| 2019      | 0    |      | 131  | 262  | 153  |      |      |      |      | 0    | 0    | 546   | 415        |
| 2018      |      | 200  | 375  |      |      |      |      |      | 0    | 0    | 0    | 575   | 375        |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

Proiect Title Water Works Park Water Treatment Plant Chlorine System Upgrade

**Project Status** Active

Water Class Lvl 1

Treatment Plants and Facilities Class Lvl 2

Water Works Park Class LvI 3

City of Detroit Location

**Project Engineer/Manager** Michael Dunn

☐ Innovation

Conc. WW Master Plan

☐ Water MP Right Sizing

☐ Reliability/Redundancy

☐ NEWTP Repurposing

**Project New To CIP** 



The Water Works Park Chlorine System has experienced several leaks and requires complete replacement. The Water Works Park storage room will have an updated scrubber system to neutralize up to 4000 lbs. of chlorine gas

**Director** Grant Gartrell

# **Project Score**

84

**Problem Statement** The existing gas chlorine feed system has experienced numerous leaks and has compromised the safety of plant personnel. In addition, the chlorine gas leaks caused significant damage to all equipment inside the chlorine storage room. Secondary damage also occurred to equipment in adjacent rooms.

Scope of Work / Project This project is being delivered under a design-bid-build project delivery method. The scope of work Alternatives generally includes the following:

- 1. Removal of existing chlorine feed system, including evaporators, feeders and associated electrical, instrumentation and control equipment.
- 2. Installation of new chlorine evaporators, feeders, and associated electrical, instrumentation and control equipment.
- 3. Installation of new heating, ventilating and air-conditioning system equipment in the chlorine storage, feeder and adjacent electrical equipment room.
- 4. Installation of new gas chlorine scrubbing system.
- 5. Installation of new Ovation monitoring and control system for the entire chlorine disinfection system at WWP.

Other Important Info Project History: The WWP facility began serving customers with finished water in 2003. More recently, the chlorine system has had one major leak and several minor leaks on a recurring and more frequent basis. Since chlorine is a highly toxic material, yet integral for providing finished water in accordance with the Safe Drinking Water Act, a study and design project was initiated under the CIP allowance as project CS-1721. This construction project will be based on the study and design conducted under that work. In

Project Title Water Works Park Water Treatment Plant Chlorine System Upgrade

addition, the original design was oversized relative to the current operating conditions and resulted in operational problems due to the turndown required.

| CIP Alias | FY16 | FY17 | FY18  | FY19  | FY20  | FY21 | FY22 | FY23 | FY24 | FY25 | FY26 | Total | 5-Yr Total |
|-----------|------|------|-------|-------|-------|------|------|------|------|------|------|-------|------------|
| 2021      | 0    | 0    | 0     | 6,686 | 754   | 0    | 0    | 0    | 0    | 0    | 0    | 7,440 | 0          |
| 2020      | 0    | 0    | 2,527 | 4,196 | 2,047 | 1    | 0    | 0    | 0    | 0    | 0    | 8,771 | 2,048      |
| 2019      | 0    | 371  | 672   | 3,124 | 2,878 | 4    |      |      |      | 0    | 0    | 7,049 | 6,006      |
| 2018      |      | 290  | 700   | 8,700 |       |      |      |      | 0    | 0    | 0    | 9,690 | 9,400      |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

Proiect Title **WWP WTP Building Ventilation Improvements** 

**Project Status** Active □ Innovation Water Conc. WW Master Plan Class Lvl 1 Treatment Plants and Facilities ☐ Water MP Right Sizing Class Lvl 2 ☐ Reliability/Redundancy Water Works Park Class Lvl 3 ☐ NEWTP Repurposing City of Detroit Location **Project New To CIP** 76

Water Works Park

Project Engineer/Manager Michael Dunn

**Director** Terry Daniel

### **Project Score**

Problem Statement The existing ventilation systems are not adequate for the chemical storage rooms, the ozone generator room, ozone destruct room, laboratory rooms, pilot plant rooms, flocculation and sedimentation rooms, and filter galleries at the Water Works Park Water Treatment Plant. Inadequate ventilation poses safety hazards to employees and visitors alike.

Scope of Work / Project This project will be delivered using a design-bid-build project delivery method. The scope of work will **Alternatives** generally include the following:

- 1) Design of the improved, new ventilation systems for the facility.
- 2) Selective removal of existing ventilation system equipment.
- 3) Construction of new mechanical ventilation systems.
- 4) Installation of electrical feeders for new mechanical ventilation equipment.
- 5) Installation of new instrumentation equipment for monitoring and alarms, including necessary interlocks with the process control network.

|           |      |      |      |      |       |       | <del>-</del> | -,,   |      |      |      |        |            |
|-----------|------|------|------|------|-------|-------|--------------|-------|------|------|------|--------|------------|
| CIP Alias | FY16 | FY17 | FY18 | FY19 | FY20  | FY21  | FY22         | FY23  | FY24 | FY25 | FY26 | Total  | 5-Yr Total |
| 2021      | 0    | 0    | 0    | 0    | 1,614 | 1,999 | 3,610        | 2,539 | 379  | 0    | 0    | 10,141 | 8,527      |
| 2020      | 0    | 0    |      | 7    | 507   | 3,907 | 650          | 0     | 0    | 0    | 0    | 5,071  | 5,064      |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

Proiect Title Water Works Park Site/Civil Improvements

**Project Status** Future Planned

Water Class Lvl 1

Treatment Plants and Facilities Class Lvl 2

Water Works Park Class LvI 3

City of Detroit Location

☐ Innovation

Conc. WW Master Plan

☐ Water MP Right Sizing

☐ Reliability/Redundancy

☐ NEWTP Repurposing

✓ Project New To CIP



Water Works Park

**Project Engineer/Manager** Michael Dunn

**Director** Grant Gartrell

# **Project Score**

39.4

Problem Statement Many of the existing roadways and pedestrian side walks have substantial cracking, crumbiling concrete and un-even surfaces whose condition becomes worse every year. The concrete bases for several portions of the site perimeter security fencing are also heavily deteriorated with crumbling concrete. Additionally, there is not sufficient employee and visitor parking space for the facility and new parking areas are needed to meet the needs of employees and visitors alike. Furthermore, there is no truck vehicle weight scale on site to verify the quantities of chemicals delivered to the site from suppliers, as well as to verify quantities of dewatered sludge transported off site for disposal. Currently, vendorgenerated quantities are used soley for payment purposes putting GLWA at a disadvantage whenever disputes arise regarding amounts invoiced. Lastly, there are several areas throughout the grounds with concrete in a poor condition that requires rehabilitation to extend its service life.

Scope of Work / Project This project will be delivered using a design-build project delivery. The schedule is predicated on using Alternatives AECOM's design build assistance services under its CIP Program Management Contract CS-272. The scope of work for this project generally includes the following:

- 1. Construct 30 car parking lot adjacent to plant employee lot.
- 2. Construct 20 car parking lot across from maintenance garage to serve as GLWA vehicle parking.
- 3. Construct 10 car parking lot across from engineering building to serve as visitor parking.
- 4. Construct 20 car parking lot adjacent to current engineering building lot.
- 5. Install sidewalk from new proposed security entrance to flag pole.
- 6. Install hardscape, softscape, and signage on engineering building.
- 7. Install truck weigh scale.
- 8. Repair perimeter fencing and support structures.
- 9. Install access hatch for screen house catch basin.
- 10. Repair misc. concrete defects by shallow spall repair and crack injections.
- 11. Remove and replace areas of failing roadway.

Project Title Water Works Park Site/Civil Improvements

| CIP Alias | FY16 | FY17 | FY18 | FY19 | FY20 | FY21 | FY22 | FY23 | FY24 | FY25 | FY26  | Total | 5-Yr Total |
|-----------|------|------|------|------|------|------|------|------|------|------|-------|-------|------------|
| 2021      | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 5,643 | 5,643 | 0          |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

**Proiect Title** Pennsylvania and Springwells Raw Water Supply Tunnel Improvements

**Project Status** Active □ Innovation Water Conc. WW Master Plan Class Lvl 1 Treatment Plants and Facilities ☐ Water MP Right Sizing Class Lvl 2 ✓ Reliability/Redundancy General Purpose Class LvI 3 ☐ NEWTP Repurposing City of Detroit Location **Project New To CIP** 



Crown cracks are especially concerning in the Springwells Raw Water Tunnel

**Project Engineer/Manager** Todd King

### **Director** Grant Gartrell

# **Project Score**

Problem Statement Significant structural distress in the form of cracking and ovality have been detected in the Pennsylvannia, Northeast and Springwells raw water tunnels that deliver raw water to the Northeast and Springwells Water Treatment Plants. The extent and magnitude of the distress requires that these segments of tunnel be rehabilitated and restored to provide renewed structural intergrity and consequently reliability.

Scope of Work / Project This project is being delivered using a progressive design-build project delivery method. The scope of Alternatives work generally includes supplemental remove operated vehicle (ROV) and personnel diver underwater, detailed investigations to determine the nature, magnitude and extent of total tunnel rehabilitation required. The detailed investigations are also used to collect sufficient information and data to determine the preferred design and construction approach best suited to the conditions identified during the detailed underwater investigations. The investigation work of DB-150 focused on those sections of tunnel where concerns were observed during the condition assessment work conducted under former DWSD Contract No. CS-1623. Three areas were identified including the Pennsylvania Tunnel at Water Works Park (non structural rehab), Northeast Raw Water Tunnel (structural rehab) located in the Outer Drive greenbelt and the highest concern being a portion of the Springwells Tunnel near the Springwells WTP (structural rehab). Project alternatives evaluated included tunnel dewatering with rehab done in dry conditions along with tunnel bypass pumping; new tunnel construction, and tunnel rehab in the wet using underwater diver teams. The DB-150 project approach will involve the latter alternative to rehab the tunnel sections of concern.

Other Important Info The tunnels are approximately 80 to 100 feet below ground surface. Dewatering the tunnels to repair them will create extensive stresses that must be considered prior to performing the work. Maintaining a supply of raw water to Springwells, Northeast and Water Works Park throughout construction to meet finished water production requirements/demands of the system. Specialized/complicated construction.

VIII-61

Project Title Pennsylvania and Springwells Raw Water Supply Tunnel Improvements

Project History: Portions of the Raw Water Tunnel system are approaching 100 years of service. The Northeast Tunnel failed catastrophically in the late 80s due to infiltration of sand through cracking. This project is based on the recommendations of CS-1623, currently underway, which is inspecting all GLWA raw water tunnels.

| CIP Alias | FY16 | FY17 | FY18  | FY19   | FY20   | FY21   | FY22   | FY23  | FY24  | FY25 | FY26 | Total  | 5-Yr Total |
|-----------|------|------|-------|--------|--------|--------|--------|-------|-------|------|------|--------|------------|
| 2021      | 0    | 0    | 0     | 10,200 | 653    | 14,138 | 21,917 | 8,810 | 5,527 | 0    | 0    | 61,245 | 50,392     |
| 2020      | 0    | 0    | 2,178 | 7,513  | 5,467  | 5,467  | 5,467  | 3,998 | 0     | 0    | 0    | 30,090 | 20,399     |
| 2019      | 0    | 10   | 3,625 | 9,042  | 5,468  | 5,468  | 5,468  | 3,998 |       | 0    | 0    | 33,079 | 29,444     |
| 2018      |      | 500  | 2,000 | 10,000 | 15,000 | 4,900  |        |       | 0     | 0    | 0    | 32,400 | 31,900     |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

**Project Title** Parallel 42-Inch Main in 24 Mile Road from Rochester Station to Romeo Plank Road

**Project Status** Closed □ Innovation Water Conc. WW Master Plan Class Lvl 1 Field Services ☐ Water MP Right Sizing Class Lvl 2 Transmission System ✓ Reliability/Redundancy Class Lvl 3 ☐ NEWTP Repurposing Macomb County Location  $^{oxed}$  Project New To CIP



A large water main

Project Engineer/Manager Khader Hamad

**Director** Grant Gartrell

# **Project Score**

**Problem Statement** Paralleling original 36" water main that is critical to the supply of three communities and has had history

of breaks

Scope of Work / Project This project will provide for the installation of approximately 35,650 feet of parallel 42-inch diameter pre-Alternatives stressed embedded concrete cylinder pipe (PCCP) and approximately 1,070 linear feet of 36-inch diameter of PCCP in 24 Mile Road from Rochester Station to Romeo Plank Road. The work will also

provide for all interconnections and valves.

Other Important Info Challenges: N/A - Pending Closeout

| CIP Alias | FY16  | FY17   | FY18   | FY19   | FY20 | FY21 | FY22 | FY23 | FY24 | FY25 | FY26 | Total  | 5-Yr Total |
|-----------|-------|--------|--------|--------|------|------|------|------|------|------|------|--------|------------|
| 2021      | 0     | 0      | 0      | 33,246 | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 33,246 | 0          |
| 2020      | 0     | 0      | 33,566 | 0      | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 33,566 | 0          |
| 2019      | 0     | 32,571 | 2,813  |        |      |      |      |      |      | 0    | 0    | 35,384 | 0          |
| 2018      | 26926 | 2,367  | 715    |        |      |      |      |      | 0    | 0    | 0    | 30,008 | 715        |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

Class Lvl 3

Project Title Replacement of Five (5) PRV Pits of Treated Water Transmission System

Project Status Closed ☐ Innovation

Class Lvl 1 Water ☐ Conc. WW Master Plan

Class Lvl 2 Field Services 

Water MP Right Sizing

Transmission System 

✓ Reliability/Redundancy

**Location** Multiple Counties 

NEWTP Repurposing

 $\square$  Project New To CIP



An example PRV

**Project Engineer/Manager** Eric Kramp

**Director** Grant Gartrell

# **Project Score**

Problem Statement Replacement of the PRVs to enhance operability of the system and improve control of the system to

meet customer pressure needs

Scope of Work / Project This project has replaced five existing pressure reducing valves (PRVs) that were defective and no longer

**Alternatives** controlling downstream pressures. During the replacement, the PRV pits were upgraded to improve accessibility, provide new sump pumps as needed, and make other necessary improvements to

operations.

Other Important Info Challenges: N/A - Closed

Project History: Change Order Number one has been executed, and contractor final payment issued.

| - 3 1     |      |       |       |       |      | 9 -  | 1    | , ,  |      |      |      |       |            |
|-----------|------|-------|-------|-------|------|------|------|------|------|------|------|-------|------------|
| CIP Alias | FY16 | FY17  | FY18  | FY19  | FY20 | FY21 | FY22 | FY23 | FY24 | FY25 | FY26 | Total | 5-Yr Total |
| 2021      | 0    | 0     | 0     | 2,785 | 5    | 0    | 0    | 0    | 0    | 0    | 0    | 2,790 | 0          |
| 2020      | 0    | 0     | 1,844 | 804   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 2,648 | 0          |
| 2019      | 0    | 1,697 | 670   |       |      |      |      |      |      | 0    | 0    | 2,367 | 0          |
| 2018      | 1015 | 1,205 |       |       |      |      |      |      | 0    | 0    | 0    | 2,220 | 0          |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

**Proiect Title** Water Works Park to Northeast Transmission Main

**Project Status** Active

Water Class Lvl 1

Field Services Class Lvl 2

Transmission System Class Lvl 3

City of Detroit Location

□ Innovation

Conc. WW Master Plan

✓ Water MP Right Sizing

✓ Reliability/Redundancy

✓ NEWTP Repurposina

 $\square$  Project New To CIP

62.4





**Project Engineer/Manager** Timothy Kuhns

**Problem Statement** The 2015 GLWA Water Master Plan update indicated that the regional system has significant excess capacity for water treatment compared to projected water demands. The analysis contained in the Water Mater Plan update indicated that for average day demand conditions, the five WTPs typically operate between 23 percent to 35 percent of the rated treatment capacity and for maximum day demand conditions, the five WTPs typically operate between 38 percent to 67 percent of the treatment rated capacity. To address this imbalance, the Water Master Plan update recommended a program to reduce the regional treatment capacity to better align it with future system water demands. In order to align treatment capacity and projected system demands, the 2015 Water Master Plan update recommended that a new water transmission system be constructed from the Water Works Park WTP to the Northeast WTP to provide finished water to the Northeast reservoirs from the Water Works Park WTP. Under this recommendation, low lift and treatment facilities would be decommissioned at the Northeast WTP and the high-lift pumps/reservoirs at the Northeast WTP will be repurposed to function as a booster pump station to re-pump the treated, finished water delivered to the Northeast WTP site from the Water Works Park WTP through the new water transmission main system, the finished water reservoirs and high lift station at Northeast could be left in service such that the site could operate as a booster station moving forward.

Scope of Work / Project This project includes three separate construction phases for the completion of the overall water **Alternatives** transmission system from Water Works Park to Northeast:

- (1) Phase 1 Construction of 84-inch yard piping and a Flow Control Facility at the Northeast site.
- (2) Phase 2 Construction of 19,000 feet of 81-inch water transmission main (WTM) from the Northeast site to the intersection of Harper/Venice
- (3) Phase 3 Construction of 3,000 feet of 81-inch WTM from intersection of Harper/Venice to the intersection of South Edsel Ford Service Drive/Garland, construction of 6,700 feet of 66-inch WTM from the intersection of the South Edsel Ford Service Drive/Garland to the intersection of Hurlbut/Sylvester.

Project Title Water Works Park to Northeast Transmission Main

Other Important Info Challenges: Construction of large diameter WTM in the road ROW north of I-94. Identification of as-built

host pipe condition for Hurlbut, Bewick, and Garland Mains to maximize I.D. of liner pipe.

Tiosi pipe condition for hondor, bewick, and oandria mains to maximize i.d. or liner pipe.

This project was recommended as part of the 2015 Water Master Plan Update to align treatment capacity with decreasing water demands.

| CIP Alias | FY16 | FY17 | FY18  | FY19  | FY20   | FY21   | FY22   | FY23   | FY24   | FY25   | FY26   | Total   | 5-Yr Total |
|-----------|------|------|-------|-------|--------|--------|--------|--------|--------|--------|--------|---------|------------|
| 2021      | 0    | 0    | 0     | 2,611 | 1,169  | 11,703 | 18,407 | 18,678 | 18,170 | 20,839 | 65,949 | 157,526 | 87,797     |
| 2020      | 0    | 0    | 1,655 | 1,121 | 871    | 15,786 | 24,115 | 29,615 | 29,994 | 30,115 | 0      | 133,272 | 100,381    |
| 2019      | 0    | 19   | 1,305 | 1,372 | 8,622  | 17,547 | 46,022 | 30,722 | 25,270 | 0      | 0      | 130,879 | 104,285    |
| 2018      |      |      | 1,500 | 5,000 | 10,000 | 74,000 | 2,000  | 37,500 | 0      | 0      | 0      | 130,000 | 92,500     |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

Class Lvl 2

Class Lvl 3

Proiect Title 96-inch Water Transmission Main Relocation and Isolation Valve Installations

**Project Status** Active □ Innovation

Water Conc. WW Master Plan Class Lvl 1

> Field Services ☐ Water MP Right Sizing

Transmission System ✓ Reliability/Redundancy

☐ NEWTP Repurposing **Multiple Counties** Location

**Project New To CIP** 

Project Engineer/Manager Grant Gartrell

65.2



Map of the 96-inch main relocation away from the landfill

**Director** Grant Gartrell

# **Project Score**

Problem Statement Project critical to providing isolation and redundancy to Lake Huron WTP supply, while protecting the water supply from potential contamination at the G&H Landfill. Project includes relocation around

existing superfund landfill addition of isolation valves along the 96-inch water transmission main.

Scope of Work / Project Relocate 2.5 miles of 96-inch transmission main currently located in an EPA NPL landfill, a portion of which Alternatives is submerged in landfill leachate. Relocation includes crossing the Clinton River, coordination with many various authorities having jurisdiction and easement acquisition. Isolation valve installation portion of the project provides the ability to isolate segments of the 96-inch main between Imlay Station and North Service Center for maintenance while maintaining customer expected level of service.

Other Important Info Challenges: Shutdown, continued customer service, isolation valve installations while maintaining the Lake Huron WTP supply to Rochester Station. Property acquisition will be required for the chesterfield temporary booster station and East Pond Creek discharge facility for relocation around the landfill.

| - ,       |      |      |       |       |        | <b>-</b> | 1      | ,      |        |        |        |         |            |
|-----------|------|------|-------|-------|--------|----------|--------|--------|--------|--------|--------|---------|------------|
| CIP Alias | FY16 | FY17 | FY18  | FY19  | FY20   | FY21     | FY22   | FY23   | FY24   | FY25   | FY26   | Total   | 5-Yr Total |
| 2021      | 0    | 0    | 0     | 1,790 | 2,549  | 5,267    | 15,765 | 19,937 | 19,797 | 19,797 | 59,969 | 144,871 | 80,563     |
| 2020      | 0    | 0    | 1,130 | 837   | 5,000  | 6,000    | 26,453 | 35,886 | 23,453 | 33,907 | 0      | 132,666 | 96,792     |
| 2019      | 0    | 460  | 570   | 1,797 | 2,644  | 895      | 23,087 | 45,825 | 57,389 | 0      | 0      | 132,667 | 74,248     |
| 2018      |      | 500  | 1,500 | 6,000 | 35,900 | 31,700   | 31,700 | 31,700 | 0      | 0      | 0      | 139,000 | 106,800    |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

Class Lvl 1

Class Lvl 2

Proiect Title **Schoolcraft Road Water Transmission Main** 

**Project Status** Active □ Innovation

**Director** Grant Gartrell

Transmission System Class Lvl 3

Water

Wayne County - Outside Detroit Location

Field Services

**Project Engineer/Manager** Nick Hoffman

**Project New To CIP** 

42

☐ NEWTP Repurposing

☐ Water MP Right Sizing

✓ Reliability/Redundancy

Conc. WW Master Plan

**Project Score** 



Water main replacement

Problem Statement We currently operate an existing 48-inch water trasnmission main on West Bound Schoolcraft Road. This existing PCCP transmission main was manufactured by Interpace Corporation which has a long documented history of PCCP failures due to manufacturing means and methods of the pre-stressed wires. Due to excessive breaks over the years and the downstream effect on customers, we are improving the transmission system reliability and redundancy by installing a new 48-inch water transmission main on Eastbound Schoolcraft Road.

Scope of Work / Project Design and Construction of approximately 12,000 linear feet of new PCCP or Carbon Steel 48-inch water Alternatives transmission main along Eastbound Schoolcraft service drive between Middlebelt and Beech Daly. Including isolation valves, blowoff's, valve vaults, manhole entrances and related appurtenances. Upon completion and tie-in of the new Eastbound Schoolcraft transmission main the existing will be abandoned in place.

Other Important Info Designed under CS-1488 by Somat Engineering

| •         |      | •    |      |       |       | _      |       |      |      |      |      |        |            |  |
|-----------|------|------|------|-------|-------|--------|-------|------|------|------|------|--------|------------|--|
| CIP Alias | FY16 | FY17 | FY18 | FY19  | FY20  | FY21   | FY22  | FY23 | FY24 | FY25 | FY26 | Total  | 5-Yr Total |  |
| 2021      | 0    | 0    | 0    | 141   | 3,342 | 13,141 | 1,482 | 0    | 0    | 0    | 0    | 18,106 | 14,623     |  |
| 2020      | 0    | 0    | 4    | 180   | 8,100 | 9,145  | 633   | 0    | 0    | 0    | 0    | 18,062 | 17,878     |  |
| 2019      | 0    |      | 16   | 50    | 6,249 | 6,899  | 591   |      |      | 0    | 0    | 13,805 | 13,789     |  |
| 2018      |      |      |      | 7,300 | 7,250 |        |       |      | 0    | 0    | 0    | 14,550 | 14,550     |  |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

Proiect Title **Wick Road Water Transmission Main** 

**Project Status** Active

Water Class Lvl 1

Field Services Class Lvl 2

Transmission System Class Lvl 3

Wayne County - Outside Detroit Location

**Project New To CIP** 

□ NEWTP Repurposing

☐ Innovation

54.2

Conc. WW Master Plan

☐ Water MP Right Sizing

✓ Reliability/Redundancy

**Project Score** 



Transmission main

**Director** Grant Gartrell

**Project Engineer/Manager** Nick Hoffman

Problem Statement Existing water main from Wick Station to Ypsilanti station has history of excessive breaks. Additionally, the main is the only primary connection between the two facilities with multiple community Master Meters along its alignment. A break in this line is disruptive to several communities dependent upon the failure location. The intent is to improve the transmission system reliability/redundancy by means of constructing a parallel 48-inch water main along Wick Road.

Scope of Work / Project Design and Construction of the new 48-inch transmission main along Westbound Wick Road in Romulus, **Alternatives** MI including isolation valves and interconnects that will tie-in with the existing main along the alignment. Completion of this project will alleviate pressures and potential transients between the two mains, as well

as increase reliability/redundancies in the general area.

| CIP Alias | FY16 | FY17   | FY18  | FY19  | FY20   | FY21   | FY22  | FY23 | FY24 | FY25 | FY26 | Total  | 5-Yr Total |
|-----------|------|--------|-------|-------|--------|--------|-------|------|------|------|------|--------|------------|
| 2021      | 0    | 0      | 0     | 420   | 6,163  | 9,975  | 5,780 | 0    | 0    | 0    | 0    | 22,338 | 15,755     |
| 2020      | 0    | 0      | 126   | 1,370 | 18,028 | 12,334 | 60    | 0    | 0    | 0    | 0    | 31,918 | 30,422     |
| 2019      | 0    | 23     | 16    | 1,743 | 12,373 | 10,154 | 10    |      |      | 0    | 0    | 24,319 | 24,280     |
| 2018      |      | 10,000 | 9,350 |       |        |        |       |      | 0    | 0    | 0    | 19,350 | 9,350      |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

**Project Title** Merriman Road Water Transmission Main Loop

**Project Status** Future Planned

Water Class Lvl 1

Field Services Class Lvl 2

Transmission System Class Lvl 3

Wayne County - Outside Detroit Location

☐ Innovation

Conc. WW Master Plan

✓ Water MP Right Sizing

✓ Reliability/Redundancy

☐ NEWTP Repurposing

**Project New To CIP** 



Water main installation

Project Engineer/Manager Jacob Mangum

**Director** Grant Gartrell

# **Project Score**

61.6

Problem Statement Currently, several member partners (served by master meters WL-08, WL-03, WL-01, WL-12, WY-01, RS-01, GC-03) are fed by a single 36-inch water transmission main along Michigan Avenue. Construction of this proposed Merriman Road transmission main will provide a second feed to these member partners and therefore provide redundancy. Additionally, construction of this proposed Merriman Road transmission main improves and reinforces water service delivery to the point where the Michigan Avenue Booster Pumping Station is not needed anymore. Therefore, as was recommended in the 2015 Water Master Plan Update, this proposed project is also a predecessor project to decommissioning the Michigan Avenue Booster Station.

Scope of Work / Project This project involves design and construction services associated with the installation of 2 miles of new 30-Alternatives inch transmission main along Merriman Road between Glenwood and Marquette Roads. Alternatives evaluated included new main on either:

- 1. Hannon Road (rejected because of its poor route relative to other options)
- 2. Newburgh Road (rejected because it is not technically feasible as it will not meet contract pressures.
- 3. Merriman Road (accepted because it is superior in its transmission capabilities, routing and opportunity to decommission the Michigan Avenue Pump Station).

| CIP Alias | FY16 | FY17 | FY18  | FY19  | FY20  | FY21  | FY22 | FY23 | FY24  | FY25  | FY26   | Total  | 5-Yr Total |
|-----------|------|------|-------|-------|-------|-------|------|------|-------|-------|--------|--------|------------|
| 2021      | 0    | 0    | 0     | 0     | 0     | 0     | 0    | 15   | 390   | 1,297 | 19,755 | 21,457 | 1,702      |
| 2020      | 0    | 0    |       | 0     | 0     | 0     | 0    | 30   | 5,209 | 0     | 0      | 5,239  | 5,239      |
| 2019      | 0    |      | 6     | 653   | 1,611 | 2,076 | 901  |      |       | 0     | 0      | 5,247  | 5,241      |
| 2018      |      |      | 1,800 | 2,200 |       |       |      |      | 0     | 0     | 0      | 4,000  | 4,000      |

Project Title Merriman Road Water Transmission Main Loop

\* In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

**Project Title** Water System Improvements in Joy Road from Southfield Road to Trinity

**Project Status** Closed □ Innovation Water Conc. WW Master Plan Class Lvl 1 Field Services ☐ Water MP Right Sizing Class Lvl 2 Transmission System ✓ Reliability/Redundancy Class Lvl 3 ☐ NEWTP Repurposing City of Detroit Location **Project New To CIP** 



Water main being laid

Project Engineer/Manager Khader Hamad

**Director** Grant Gartrell

# **Project Score**

Problem Statement Replacement of original piping with excessive break history with new ductile iron main along Wayne

County roadway.

Scope of Work / Project The work consists of replacement of existing distribution mains and existing 24-inch transmissions mains, Alternatives including gate valve, blow offs, air release valves and other appurtenances along Joy Road from Southfield Freeway to Trinity Road in the City of Detroit. A portion of this work is part of the Retail system (not included in this amount) CIP No. 463. Joy Road is also a significant Wayne County roadway within

Detroit and a DDOT bus route.

Other Important Info Challenges: N/A - Pending Closeout

| •         |      | •    |      |      | •    | _    |      |      |      |      |      |       |            |
|-----------|------|------|------|------|------|------|------|------|------|------|------|-------|------------|
| CIP Alias | FY16 | FY17 | FY18 | FY19 | FY20 | FY21 | FY22 | FY23 | FY24 | FY25 | FY26 | Total | 5-Yr Total |
| 2021      | 0    | 0    | 0    | 149  | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 149   | 0          |
| 2020      | 0    | 0    | 107  |      |      |      |      |      |      |      | 0    | 107   | 0          |
| 2019      | 0    | 107  |      |      |      |      |      |      |      | 0    | 0    | 107   | 0          |
| 2018      | 8323 | 100  |      |      |      |      |      |      | 0    | 0    | 0    | 8,423 | 0          |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

Project Title Water Main Replacement within the City of Detroit - Joy Rd from Greenfield to Schaefer and Davison Ave from

 Project Status
 Closed

 Class Lvl 1
 Water

 Class Lvl 2
 Field Services

 Class Lvl 3
 Transmission System

 Location
 City of Detroit

 Innovation

 Water MP Right Sizing

 Reliability/Redundancy

 NEWTP Repurposing

 $^{oxed}$  Project New To CIP



Water main being replaced

**Project Engineer/Manager** Eric Kramp

**Director** Grant Gartrell

**Project Score** 

Problem Statement Original piping has history of excessive breaks; replacing to minimize disruption in high-traffic area

Scope of Work / Project Work includes replacement of approx. 18500 ft. of existing water main with 8", 12", and 16" DI pipe along Alternatives both Joy Rd and Davison. The scope of work also includes approx. 5300 ft. of 24" DI pipe along Joy Rd. A portion of this work is part of the Retail system (amounts not included) CIP No. 463.

Other Important Info Challenges: N/A - Active

|           |      | •     |       |      | •    |      | •    | · ,  |      |      |      |       |            |
|-----------|------|-------|-------|------|------|------|------|------|------|------|------|-------|------------|
| CIP Alias | FY16 | FY17  | FY18  | FY19 | FY20 | FY21 | FY22 | FY23 | FY24 | FY25 | FY26 | Total | 5-Yr Total |
| 2021      | 0    | 0     | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0     | 0          |
| 2020      | 0    | 0     |       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0     | 0          |
| 2019      | 0    |       | 16    |      |      |      |      |      |      | 0    | 0    | 16    | 0          |
| 2018      |      | 1,370 | 1,106 | 652  |      |      |      |      | 0    | 0    | 0    | 3,128 | 1,758      |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

Proiect Title Park-Merriman Road Water Transmission Main

**Director** Grant Gartrell

**Project Status** Active

Water Class Lvl 1

Field Services Class Lvl 2

Transmission System Class Lvl 3

Wayne County - Outside Detroit Location

**Project New To CIP** 

☐ NEWTP Repurposing

☐ Innovation

30.2

Conc. WW Master Plan

☐ Water MP Right Sizing

✓ Reliability/Redundancy

**Project Score** 



Water main being installed

**Project Engineer/Manager** Peter Fromm

Problem Statement Currently, most of the wholesale master meters serving the cities of Wayne and Westland are fed off a single, "dead-end" transmission main, which provides no redundancy in service aside from customer lateral distribution opportunities. Additionally, Wayne, Westland and Inkster have deduct wholesale meters that are fed off the single, "dead-end" transmission main. Construction of this new 24-inch water main will create a loop for these member partners and thereby eliminate the single, "dead-end" main. Direct meter connections will be made to the new 24-inch transmission main so that all deduct water meters will be eliminated as part of this CIP project.

Scope of Work / Project This CIP project is being delivered under a design-bid-build project delivery method and generally **Alternatives** includes the following scope of work:

- 1. Construction of 7,000 linear feet of 24-inch diameter ductile iron water transmission main. which includes 2 directional drills to install this main under the lower Rouge River, and 1 jack-and-bore to install this main under Michigan Avenue.
- 2. Constructing 2 new wholesale master meters and associated vaults for the city of Wayne.
- 3. Associated park improvements where the new transmission main is installed through the Wayne County Venoy-Dorsey Park.

Other Important Info Challenges: Shutdowns to connect the two new meters with the City of Wayne. The water pressure during these two shutdowns will be reducers and coordination will need to take place with the City of Wayne, their residents and local businesses.

# Project Expenses Compared to Previous CIP Versions (All figures are in \$1,000's)

| CIP Alias | FY16 | FY17 | FY18 | FY19  | FY20  | FY21  | FY22   | FY23 | FY24 | FY25 | FY26 | Total | 5-Yr Total |
|-----------|------|------|------|-------|-------|-------|--------|------|------|------|------|-------|------------|
| 2021      | 0    | 0    | 0    | 988   | 4,474 | 2,163 | 0      | 0    | 0    | 0    | 0    | 7,625 | 2,163      |
| 2020      | 0    | 0    | 156  | 1,067 | 4,737 | 2,237 | 6      | 0    | 0    | 0    | 0    | 8,203 | 6,980      |
|           |      |      |      |       |       |       | WIII 7 | 7 /  |      |      |      |       |            |

VIII-74

Project Title Park-Merriman Road Water Transmission Main

| CIP Alias | FY16 | FY17 | FY18  | FY19  | FY20  | FY21  | FY22 | FY23 | FY24 | FY25 | FY26 | Total | 5-Yr Total |
|-----------|------|------|-------|-------|-------|-------|------|------|------|------|------|-------|------------|
| 2019      | 0    |      | 23    | 955   | 3,676 | 1,549 | 6    |      |      | 0    | 0    | 6,209 | 6,186      |
| 2018      |      |      | 1,800 | 2,200 |       |       |      |      | 0    | 0    | 0    | 4,000 | 4,000      |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

Project Title 36-inch Water Main in Telegraph Road

**Project Status** Pending Closeout

Class Lvl 1 Water

Class Lvl 2 Field Services

Class Lvl 3 Transmission System

**Location** Wayne County - Outside Detroit

☐ NEWTP Repurposing
☐ Project New To CIP

□ Innovation

45.6

Conc. WW Master Plan

☐ Water MP Right Sizing

✓ Reliability/Redundancy

Water main ready to install

Project Engineer/Manager Khader Hamad

**Director** Grant Gartrell

### **Project Score**

Problem Statement Excessive joint leaks warrant replacement; new water line to be placed in greenbelt

Scope of Work / Project This project includes installation of approximately 10,530 feet of 36-inch dia. water main in Telegraph

Alternatives Road from Cherry Hill to Warren Ave.

Other Important Info Challenges: N/A - Active

| CIP Alias | FY16 | FY17  | FY18  | FY19  | FY20 | FY21 | FY22 | FY23 | FY24 | FY25 | FY26 | Total  | 5-Yr Total |
|-----------|------|-------|-------|-------|------|------|------|------|------|------|------|--------|------------|
| 2021      | 0    | 0     | 0     | 9,959 | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 9,959  | 0          |
| 2020      | 0    | 0     | 9,418 | 155   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 9,573  | 0          |
| 2019      | 0    | 8,125 | 2,257 | 3     |      |      |      |      |      | 0    | 0    | 10,385 | 3          |
| 2018      |      | 2,000 | 5,061 |       |      |      |      |      | 0    | 0    | 0    | 7,061  | 5,061      |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

Project Title 14 Mile Transmission Main Loop

**Project Status** Active □ Innovation Water Conc. WW Master Plan Class Lvl 1 Field Services ☐ Water MP Right Sizing Class Lvl 2 Transmission System ✓ Reliability/Redundancy Class Lvl 3 ☐ NEWTP Repurposing Oakland County Location  $\square$  Project New To CIP 58.4 Project Engineer/Manager Sara Mille **Director** Grant Gartrell **Project Score Problem Statement** The 14 Mile Transmission Main that currently serves West Bloomfield Township, Farmington Hills, Commerce Township, Novi, Walled Lake, and Wixom is a single feed transmission system. If a disruption to service were to occur on this transmission main, many of the users along this main would experience a complete loss of pressure and flow. This project would provide a transmission main loop to the 14 Mile system to increase redundancy on this branch of the system. Scope of Work / Project Install approximately 6 Miles of 48-inch transmission main from 8 Mile Road to 14 Mile Road. It also Alternatives includes construction of approximately 1 mile of new 24-inch parallel transmission main along 14 Mile from M-5 to west of Decker Road to reinforce the 14 Mile Transmission System. The work will also include connections to the yard piping and reservoir fill line at the Haggerty Booster Station as well as a control valve to regulate flows along the transmission main. Other Important Info GLWA is collaborating with the City of Novi on the potential to provide an additional master meter connection with Novi along Napier Road where the new 48-inch tranmission main will be installed. Project History: The 2015 Water Master Plan Update included a recommendation to evaluate options along this branch of the system to increase redundancy. Since that recommendation, GLWA Water Supply Operations Engineering performed a hydraulic analysis of redundancy alternatives for the 14 Mile Transmission System. The results of the hydraulic analysis was presented at the May 15, 2017 and September 19, 2017 Analytical Work Group Meetings and based on the discussion at these meetings, the Haggerty Loop Option described in the scope of work appears to be the preferred alternative. Challenges: Routing and construction staging for the proposed piping in the vicinity of the Haggerty and

volume intersections in Southeast Michigan.

8 Mile Intersection appears to be a significant challenge as this intersection is one of the highest traffic

Project Title 14 Mile Transmission Main Loop

| CIP Alias | FY16 | FY17  | FY18   | FY19   | FY20  | FY21  | FY22   | FY23   | FY24   | FY25   | FY26 | Total  | 5-Yr Total |
|-----------|------|-------|--------|--------|-------|-------|--------|--------|--------|--------|------|--------|------------|
| 2021      | 0    | 0     | 0      | 638    | 3,762 | 1,194 | 17,085 | 17,085 | 17,085 | 17,085 | 7    | 73,941 | 69,534     |
| 2020      | 0    | 0     |        | 0      | 751   | 1,315 | 1,507  | 13,420 | 12,000 | 25,433 | 0    | 54,426 | 28,993     |
| 2019      | 0    |       |        |        | 751   | 1,315 | 1,507  | 13,420 | 37,433 | 0      | 0    | 54,426 | 16,993     |
| 2018      |      | 1,300 | 10,500 | 12,000 | 6,000 |       |        |        | 0      | 0      | 0    | 29,800 | 28,500     |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

Proiect Title **Downriver Transmission Main Loop** 

**Project Status** Active

Water Class Lvl 1

Field Services Class Lvl 2

Transmission System Class LvI 3

Wayne County - Outside Detroit Location

☐ Innovation

Conc. WW Master Plan

☐ Water MP Right Sizing

✓ Reliability/Redundancy

☐ NEWTP Repurposing

**Project New To CIP** 



Example transmission main

Project Engineer/Manager Sara Mille

**Director** Grant Gartrell

# **Project Score**

58.4

Problem Statement The Downriver Transmission Main that currently serves Brownstown, Riverview, Woodhaven, Trenton, Flat Rock, Gibraltar, Rockwood, South Rockwood, Berlin Township, and Grosse Isle is a single feed transmission system. If a disruption to service were to occur on this transmission main, many of the users along this main would experience a complete loss of pressure and flow. The number of users that would experience pressure loss would depend on the location of the break. This project would provide a transmission main loop to the Downriver system to provide redundancy on this branch of the system.

Scope of Work / Project This project will be delivered using a design-bid-build project delivery method. The scope of work **Alternatives** generally includes: installing approximately 9 miles of 16-inch transmission main and 1 mile of 24-inch transmission main paralleling the existing Allen Road/Dixie Highway transmission main and install 4 miles of 30-inch transmission main along Inkster road between Wick and Pennsylvania road. This will provide redundancy to the Downriver communities of Brownstown, Riverview, Woodhaven, Trenton, Flat Rock, Gibraltar, Rockwood, South Rockwood, Berlin Township, and Grosse Isle. The project's scope will also include the demolition of the Electric Avenue Booster Pumping Station reserviors, as well as replacement of the city of Trenton's billing meters.

Other Important Info Completion of the Downriver Transmission main loop is predicated on acquiring ownership of a portion of 24-inch transmission main owned but not used by the City of Trenton. As of this CIP update, the acquisition of this Trenton main is nearing completion.

> Project History: The 2015 Water Master Plan Update included a recommendation to evaluate options along this branch of the system to increase redundancy. Since that recommendation, GLWA Water Supply Operations Engineering performed a hydraulic analysis of redundancy alternatives for the Downriver Transmission System. The results of the hydraulic analysis were presented at the May 15, 2017, September 19, 2017, May 31,2018, and February 26, 2019 Analytical Work Group Meetings and based on the discussion at these meetings the approach described in the scope of work was determined as the

> > VIII-79

Project Title Downriver Transmission Main Loop

best alternative.

| CIP Alias | FY16 | FY17 | FY18 | FY19 | FY20  | FY21  | FY22  | FY23   | FY24   | FY25  | FY26  | Total  | 5-Yr Total |
|-----------|------|------|------|------|-------|-------|-------|--------|--------|-------|-------|--------|------------|
| 2021      | 0    | 0    | 0    | 24   | 1,398 | 1,748 | 3,793 | 7,984  | 8,007  | 7,984 | 6,806 | 37,744 | 29,516     |
| 2020      | 0    | 0    |      | 0    | 297   | 964   | 3,051 | 10,763 | 22,122 | 0     | 0     | 37,197 | 37,197     |
| 2019      | 0    |      |      |      | 297   | 964   | 3,051 | 10,763 | 22,122 | 0     | 0     | 37,197 | 15,075     |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

Proiect Title 7 Mile/Nevada Transmission Main Rehab and Carrie/Nevada Flow Control Station

**Project Status** Future Planned □ Innovation Water Conc. WW Master Plan Class Lvl 1 Field Services ✓ Water MP Right Sizing Class Lvl 2 Transmission System ✓ Reliability/Redundancy Class Lvl 3 ☐ NEWTP Repurposing City of Detroit Location  $\square$  Project New To CIP 84.2 **Project Engineer/Manager** Timothy Kuhns

**Project Score** 

**Director** Grant Gartrell

Problem Statement The primary driver of this project is to provide back up water service from Springwells WTP to the Water Works and Northeast Service Areas in case of loss of service to the Water Works Park WTP or Northeast WTP.

> The secondary driver to this project is to support Northeast WTP repurposing by providing a second finished water supply main to the Northeast site to support maximum day demands for the Northeast service area, which can be as high as 190 MGD. With the upcoming decommissioning of treatment at the Northeast WTP, Water Works Park will provide 150 MGD of finished water to the Northeast high lift pumping system to provide service to the existing Northeast service area, which means that 40 MGD must be delivered from other water treatment plants during the maximum day demand conditions. 7 Mile/Nevada Transmission Main provides transmission between the Springwells and Water Works Park Service areas and will provide needed redundancy once Northeast WTP treatment is decommissioned.

Scope of Work / Project Project includes inspection and rehab of the 7 Mile/Nevada Transmission Main and construction of a Alternatives new flow control station at Carrie/Nevada.

Other Important Info This project highlights the need to reinforce the transmission system in order to reliably provide service during existing conditions and after treatment is decommissioned at the Northeast WTP. This project would be completed regardless of whether the Northeast WTP treatment is decommissioned.

| CIP Alias | FY16 | FY17 | FY18 | FY19 | FY20  | FY21  | FY22  | FY23  | FY24  | FY25  | FY26   | Total  | 5-Yr Total |
|-----------|------|------|------|------|-------|-------|-------|-------|-------|-------|--------|--------|------------|
| 2021      | 0    | 0    | 0    | 0    | 74    | 1,794 | 3,510 | 9,223 | 7,620 | 7,572 | 30,784 | 60,577 | 29,719     |
| 2020      | 0    | 0    |      |      | 1,040 | 6,050 | 6,910 | 3,750 | 2,750 |       | 0      | 20,500 | 20,500     |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

Project Title Garland, Hurlbut, Bewick Water Transmission System Rehabilitation

| Project Status | Future Plann  | ed                                            | ✓ Innovation                                                                                                                                                                                                                                                                                                                 |
|----------------|---------------|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Class Lvl 1    | Water         |                                               | ☐ Conc. WW Master Plan                                                                                                                                                                                                                                                                                                       |
| Class Lvl 2    | Field Service | es ·                                          | ☐ Water MP Right Sizing                                                                                                                                                                                                                                                                                                      |
| Class Lvl 3    | Transmission  | System                                        | ✓ Reliability/Redundancy                                                                                                                                                                                                                                                                                                     |
| ocation        | City of Detro | pit                                           | ✓ NEWTP Repurposing                                                                                                                                                                                                                                                                                                          |
|                |               |                                               | ✓ Project New To CIP                                                                                                                                                                                                                                                                                                         |
| Project Engine | eer/Manager   | Timothy Kuhns                                 | 89                                                                                                                                                                                                                                                                                                                           |
|                | Director      | Grant Gartrell                                | Project Score                                                                                                                                                                                                                                                                                                                |
| Proble         | em Statement  | between the decades service life and will req | The water transmission mains (WTM) within the City of Detroit were constructed as of 1870 and 1930. Mains constructed during this period have exceeded their quire replacement in the near term. Several WTM within this age of construction cance as they can be used to transmit flows between the Water Works Park WTP P. |
| Scope of W     |               | Jefferson Avenue and                          | hab of WTM along Garland Street, Hurlbut Street, and Bewick Street between<br>I-94 within the east side of the City of Detroit. This project will include a detailed<br>of these WTM to evaluate the appropriate rehabilitation method.                                                                                      |

# Project Expenses Compared to Previous CIP Versions (All figures are in \$1,000's)

Project.

|           | ······································ |      |      |      |      |       |       |       |       |       |        |        |            |
|-----------|----------------------------------------|------|------|------|------|-------|-------|-------|-------|-------|--------|--------|------------|
| CIP Alias | FY16                                   | FY17 | FY18 | FY19 | FY20 | FY21  | FY22  | FY23  | FY24  | FY25  | FY26   | Total  | 5-Yr Total |
| 2021      | 0                                      | 0    | 0    | 0    | 121  | 1,717 | 2,037 | 2,690 | 4,006 | 4,006 | 30,000 | 44,577 | 14,456     |

Other Important Info This project will be implemented concurrently with Phase 3 of CIP:122003 WWP to NE Transmision Main

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

Project Title Wick Road Booster Pumping Station Rehabilitation

|                |                                | Project New To CIP       |
|----------------|--------------------------------|--------------------------|
| Location       | Wayne County - Outside Detroit | □ NEWTP Repurposing      |
| Class Lvl 3    | Pump Station/Reservoir         | ☐ Reliability/Redundancy |
| Class Lvl 2    | Systems Control Center         | ☐ Water MP Right Sizing  |
| Class Lvl 1    | Water                          | ☐ Conc. WW Master Plan   |
| Project Status | Closed                         | ☐ Innovation             |
|                |                                |                          |



Wick Road Station

**Project Engineer/Manager** Eric Kramp

**Director** Grant Gartrell

# **Project Score**

**Problem Statement** Provides improved control on the far-western portion of the transmission system.

Scope of Work / Project Rehab 3 pumps and added VFDs and related controls system upgrades

Alternatives

Other Important Info Project closed FY 2019

| CIP Alias | FY16  | FY17 | FY18 | FY19 | FY20 | FY21 | FY22 | FY23 | FY24 | FY25 | FY26 | Total  | 5-Yr Total |
|-----------|-------|------|------|------|------|------|------|------|------|------|------|--------|------------|
| 2021      | 0     | 0    | 0    | 135  | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 135    | 0          |
| 2020      | 0     | 0    | 130  | 35   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 165    | 0          |
| 2019      | 0     |      | 147  |      |      |      |      |      |      | 0    | 0    | 147    | 0          |
| 2018      | 13452 | 250  |      |      |      |      |      |      | 0    | 0    | 0    | 13,702 | 0          |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

Proiect Title West Service Center Pumping Station, Isolation Gate Valves for Line Pumps

**Project Status** Active

Water Class Lvl 1

Systems Control Center Class Lvl 2

Pump Station/Reservoir Class Lvl 3

Oakland County Location

☐ NEWTP Repurposing **Project New To CIP** 

□ Innovation

70.8

☐ Water MP Right Sizing

✓ Reliability/Redundancy

Conc. WW Master Plan

**Project Engineer/Manager** Andrew Juergens

**Director** Grant Gartrell



Isolation gate valves

# **Project Score**

Problem Statement There are six line pumping units in the main pump house at the West Service Center Booster Pumping Station. There are butterfly valves located on the suction side all six line pumps, and resilient seated gate valves on the discharge side of three of the six line pumps. Three of the line pumps do not have a valve on their discharge side and therefore no immediate means of isolation. The existing butterfly and resilient seated gate valves are all leaking and not reliable for isolating pumps. Moreover, as mentioned, three of the line pumps do not have an isolation valve of any kind on their discharge. The poor condition and lack of discharge isolation valves on all line pumps makes it extremely challenging to take pumps out for service, repair and maintenance. Extraordinary means are required to remove pumps out for service because the entire high-pressure or intermediate-pressure pumping systems have to be temporarily shutdown.

Scope of Work / Project This project is being delivered using a design-bid-build project delivery. The scope of work generally **Alternatives** includes removing 6 existing butterfly valves from the pump suction piping and 3 existing gate valves from the high-pressure pumping system discharge piping; and providing 6 new double-disc gate valves on the pump suction piping and 6 new double disc gate valves on the pump discharge piping.

Other Important Info Challenges: Sequence of construction and meeting system demands will need to be coordinated with operations.

| CIP Alias | FY16 | FY17 | FY18 | FY19  | FY20  | FY21 | FY22 | FY23 | FY24 | FY25 | FY26 | Total | 5-Yr Total |
|-----------|------|------|------|-------|-------|------|------|------|------|------|------|-------|------------|
| 2021      | 0    | 0    | 0    | 248   | 1,666 | 65   | 0    | 0    | 0    | 0    | 0    | 1,979 | 65         |
| 2020      | 0    | 0    | 138  | 1,186 | 490   | 0    | 0    | 0    | 0    | 0    | 0    | 1,814 | 490        |
| 2019      | 0    | 66   | 147  | 1,229 | 96    |      |      |      |      | 0    | 0    | 1,538 | 1,325      |

Project Title West Service Center Pumping Station, Isolation Gate Valves for Line Pumps

| CIP Alias | FY16 | FY17 | FY18 | FY19  | FY20 | FY21 | FY22 | FY23 | FY24 | FY25 | FY26 | Total | 5-Yr Total |
|-----------|------|------|------|-------|------|------|------|------|------|------|------|-------|------------|
| 2018      |      |      | 521  | 1,000 |      |      |      |      | 0    | 0    | 0    | 1,521 | 1,521      |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

Proiect Title North Service Center Pumping Station - Hydraulic Surge Control

**Project Status** Closed Innovation Water Conc. WW Master Plan Class Lvl 1 Systems Control Center ☐ Water MP Right Sizing Class Lvl 2 Pump Station/Reservoir ☐ Reliability/Redundancy Class Lvl 3 ☐ NEWTP Repurposing Oakland County Location **Project New To CIP Project Engineer/Manager** Timothy Kuhns

28.2



Observed pressure data from meter at the border of Warren and Madison Heights.

**Director** Grant Gartrell

## **Project Score**

**Problem Statement** Madison Heights, Troy, and Sterling Heights experience pressure spikes from the suction side of the North Service Center when line pumps trip. Hydraulic transient study is needed to identify the most cost effective solution to mitigate the pressure spikes

Scope of Work / Project In recent years, the North Service Center has experienced power failures resulting in pump trips at the Alternatives facility. The pump trips have caused high pressure transients along the transmission mains serving Madison Heights, Sterling Heights, Troy, Warren, Fraser, Clinton Township, and Roseville. The proposed project involves the study of control measures to mitigate the hydraulic transients present within the system.

Other Important Info Challenges: Coordination with operations and customers necessary to complete the work.

| CIP Alias | FY16 | FY17 | FY18 | FY19  | FY20 | FY21 | FY22 | FY23 | FY24 | FY25 | FY26 | Total | 5-Yr Total |
|-----------|------|------|------|-------|------|------|------|------|------|------|------|-------|------------|
| 2021      | 0    | 0    | 0    | 215   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 215   | 0          |
| 2020      | 0    | 0    | 215  | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 215   | 0          |
| 2019      | 0    | 75   | 157  |       |      |      |      |      |      | 0    | 0    | 232   | 0          |
| 2018      |      | 200  | 500  | 2,000 | 100  |      |      |      | 0    | 0    | 0    | 2,800 | 2,600      |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

Class Lvl 2

Class Lvl 3

Project Title Ford Road Pumping Station, Pressure and Control Improvements

Project Status Active

Class Lvl 1 Water 

Conc. WW Master Plan

✓ Reliability/Redundancy

**Location** Wayne County - Outside Detroit NEWTP Repurposing

 $^{oxed}$  Project New To CIP

Project Engineer/Manager Eric Kramp

**Director** Grant Gartrell

Pump Station/Reservoir

43.4



Ford Road Booster Pumping Station

# **Project Score**

**Problem Statement** Design of isolation, pressure and flow control equipment for efficient delivery of consistent pressures to

wholesale customers at Ford Road water booster pumping station

**Scope of Work / Project** The project generally consists of:

Alternatives Replacing all pump suction butterfly valves with new triple offset high performance butterfly valves (10)

Replacing all control butterfly valves with new metal seated ball valves (10)

Replacement of th existing 16-inch cone valve-driven reservoir fill line a new 20-incg plunger valve

controlled fill line

Nnew 75 KW generator and appurtenances,

and related work.

Other Important Info The project is currently under procurement, and a predecisor to any work along the Newburgh water

main and Michigan Avenue Station. The two major observed challenges for the project include isolation of the station during the critical initial shutdown, and the lead time of the first six valves for the line pump

isolation valves and the first reservoir isolation valve.

| CIP Alias | FY16 | FY17 | FY18 | FY19  | FY20  | FY21 | FY22 | FY23 | FY24 | FY25 | FY26 | Total | 5-Yr Total |
|-----------|------|------|------|-------|-------|------|------|------|------|------|------|-------|------------|
| 2021      | 0    | 0    | 0    | 289   | 1,036 | 987  | 959  | 8    | 0    | 0    | 0    | 3,279 | 1,954      |
| 2020      | 0    | 0    | 161  | 235   | 2,515 | 18   | 0    | 0    | 0    | 0    | 0    | 2,929 | 2,533      |
| 2019      | 0    | 8    | 106  | 245   | 1,805 | 445  |      |      |      | 0    | 0    | 2,609 | 2,495      |
| 2018      |      |      | 200  | 2,800 |       |      |      |      | 0    | 0    | 0    | 3,000 | 3,000      |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

**Project Title** Energy Management: Freeze Protection Pump Installation at Imlay Pump Station

**Project Status** Active

Water Class Lvl 1

Systems Control Center Class Lvl 2

Pump Station/Reservoir Class Lvl 3

Lapeer County Location

✓ Innovation

Conc. WW Master Plan

✓ Water MP Right Sizing

✓ Reliability/Redundancy

☐ NEWTP Repurposing

**Project New To CIP** 



Imlay Pump Station

Project Engineer/Manager Vittoria Hogue

**Director** Grant Gartrell

### **Project Score**

37.6

**Problem Statement** This CIP project will address two principle needs. The first is the need to replace an existing large pumping units with a smaller pumping unit for the purpose of recirculating finished water inside the station's reservoir. Recirculation of reservoir water is required during the low-demand season to maintain water quality. Recirculation of reservoir water using a smaller suitability sized pumping unit will reduce operating complexity and the possibility for damage to the larger pump units. The second need for the new smaller pumping unit is to meet the lower station demands for customers served west of Imlay Station. The lower station demands are a result of Genesee County communities (outside the city of Flint) that have left GLWA's system.

Scope of Work / Project This project is being delivered using a design-build project delivery method. The scope of work generally Alternatives includes replacing one of Imlay Sation's 75 MGD pump's and 6,000 HP motor's with a smaller 22.5 MGD pump with 1,500 HP motor. The associated VFD, valves, piping and appurtenences will also be removed and replaced to accommodate the new smaller pump.

Other Important Info N/A

| CIP Alias | FY16 | FY17 | FY18 | FY19 | FY20 | FY21  | FY22 | FY23 | FY24 | FY25 | FY26 | Total | 5-Yr Total |
|-----------|------|------|------|------|------|-------|------|------|------|------|------|-------|------------|
| 2021      | 0    | 0    | 0    | 97   | 685  | 4,211 | 206  | 0    | 0    | 0    | 0    | 5,199 | 4,417      |
| 2020      | 0    | 0    | 9    | 14   | 592  | 1,315 | 230  | 0    | 0    | 0    | 0    | 2,160 | 2,137      |
| 2019      | 0    |      |      | 38   | 385  | 134   |      |      |      | 0    | 0    | 557   | 557        |
| 2018      |      |      | 200  | 500  | 300  |       |      |      | 0    | 0    | 0    | 1,000 | 1,000      |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

Proiect Title Various Pumping Stations - Needs Assessment Study

**Project Status** Pending Closeout Innovation Water Conc. WW Master Plan Class Lvl 1 Systems Control Center ☐ Water MP Right Sizing Class Lvl 2 Pump Station/Reservoir ✓ Reliability/Redundancy Class Lvl 3 ☐ NEWTP Repurposing **Multiple Counties** Location **Project New To CIP** 51.2



Example of a large pipe and valve installation

**Project Engineer/Manager** Erich Klun

**Director** Grant Gartrell

### **Project Score**

**Problem Statement** Existing pumping stations were constructed in the 1960s and 1970s and most of the pumping units were sized to meet maximum hydraulic condition and perceived to be inefficient.

Scope of Work / Project This project includes a comprehensive condition and needs assessment study of all water booster Alternatives stations, exclusive of reservoirs. System wide modelling will confirm station decommissioning as recommended by the 2015 Water Master Plan Update. The condition assessments will include all engineering disciplines, with a focus on variable speed pumping applications to meet changing station demands, DTE rate incentive identification, station metering, valve and yard piping improvements and station bypasses.

Other Important Info Challenges: Shutdown, operation and manpower required to cover the condition assessment inspections to complete the work.

| CIP Alias | FY16 | FY17 | FY18  | FY19  | FY20 | FY21 | FY22 | FY23 | FY24 | FY25 | FY26 | Total | 5-Yr Total |
|-----------|------|------|-------|-------|------|------|------|------|------|------|------|-------|------------|
| 2021      | 0    | 0    | 0     | 1,838 | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 1,838 | 0          |
| 2020      | 0    | 0    | 913   | 764   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 1,677 | 0          |
| 2019      | 0    | 33   | 722   | 1,178 |      |      |      |      |      | 0    | 0    | 1,933 | 1,178      |
| 2018      |      | 500  | 1,200 |       |      |      |      |      | 0    | 0    | 0    | 1,700 | 1,200      |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

Project Title West Service Center Pumping Station - Reservoir, Reservoir Pumping, and Division Valve Upgrades

**Project Status** Active □ Innovation Water Conc. WW Master Plan Class Lvl 1 Systems Control Center ☐ Water MP Right Sizing Class Lvl 2 Pump Station/Reservoir ✓ Reliability/Redundancy Class Lvl 3 ☐ NEWTP Repurposing Oakland County Location  $^{oxedsymbol{oxed}}$  Project New To CIP **54 Project Engineer/Manager** Andrew Juergens **Director** Grant Gartrell **Project Score** Problem Statement Construction of West Service Center Division Valves is needed to convey flows originating from the Lake Huron Water Treatment Plant through the West Service Center to the Springwells high-pressure service area while the Springwells raw water tunnel is out of service for repairs. The existing reservoirs at the West Service Center are in poor condition and continue to require periodic structural repairs despite numerous past repairs. Additionally, half of the existing reservoir pumps experience suction hydraulic issues when the reservoir level falls below half full. Scope of Work / Project This project is being delivered using a design-build project delivery method. The scope of work generally **Alternatives** involves: 1. Rehabilitating Valve Vaults #1, #4, and #7. 2. Demolishing existing Valve Vault #3 3. Constructing a new Valve Vault #3 containing a new 24-inch cone valve. 4. Demolishing two existing 10 MG reservoirs and the associated Reservoir Pump Houses #1 and #2, and the associated yard piping. 5. Constructing two new 5 MG reservoirs. 6. Constructing a new Reservoir Pump House, including three new reservoir pumping units and two new reservoir fill valves. 7. Installing new the local valve control panel and instrumentation. 8. Testing and commissioning the new pumping facilities and finished water reservoirs. 9. Restoring the site. Other Important Info Challenges: Water storage capacity and reservoir pumping capacity need to be maintained during construction. Sequence of construction and meeting system demands will need to be coordinated with operations. Construction of the new reservoirs is subject to the city of Southfield's zoning ordinances

especially related to the height of the reservoirs.

Project Title West Service Center Pumping Station - Reservoir, Reservoir Pumping, and Division Valve Upgrades

| CIP Alias | FY16 | FY17 | FY18  | FY19  | FY20  | FY21  | FY22   | FY23   | FY24  | FY25 | FY26 | Total  | 5-Yr Total |
|-----------|------|------|-------|-------|-------|-------|--------|--------|-------|------|------|--------|------------|
| 2021      | 0    | 0    | 0     | 296   | 663   | 4,323 | 12,209 | 11,853 | 8,361 | 0    | 0    | 37,705 | 36,746     |
| 2020      | 0    | 0    |       | 0     | 2,620 | 7,430 | 15,570 | 8,910  | 2,606 | 0    | 0    | 37,136 | 37,136     |
| 2019      | 0    |      |       |       | 2,620 | 7,430 | 15,570 | 8,910  | 2,606 | 0    | 0    | 37,136 | 34,530     |
| 2018      |      |      | 7,600 | 4,200 |       |       |        |        | 0     | 0    | 0    | 11,800 | 11,800     |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

**Project Title Ypsilanti Booster Pumping Station Improvements** 

**Project Status** Active □ Innovation Water Conc. WW Master Plan Class Lvl 1 Systems Control Center ☐ Water MP Right Sizing Class Lvl 2 Pump Station/Reservoir ☐ Reliability/Redundancy Class Lvl 3 ☐ NEWTP Repurposing Wayne County - Outside Detroit Location **Project New To CIP** 61.2

Ypsilanti Pump Station

**Project Engineer/Manager** Jorge Nicolas

**Director** Grant Gartrell

## **Project Score**

**Problem Statement** The Ypsilanti Booster Pumping Station does not have backup power generation and needs one in the event of a power loss to the site so that system pressure loss is avoided during these conditions. The entire station and its pumping and electrical system equipment are are original to the facility and are past their useful service life. The existing electrical system requires substantial maintenance to keep it in service. The existing pumps and motors are in poor condition and also require cumbersome maintenance to keep in service.

Scope of Work / Project This project is being delivered using a design-bid-build project delivery method. The scope of work Alternatives generally includes building a new booster pumping station that meets current water system demands, current building and electrical codes, and best industry practices for water pumping station design, operation and maintenance needs. The new station will be equipped with all new pumps, motors, drives, electrical switchgear, power distribution system, building mechanical, station passive bypass, and electrical backup power generation.

| CIP  | Alias | FY16 | FY17 | FY18 | FY19 | FY20 | FY21 | FY22  | FY23  | FY24  | FY25   | FY26  | Total  | 5-Yr Total |
|------|-------|------|------|------|------|------|------|-------|-------|-------|--------|-------|--------|------------|
| 2021 |       | 0    | 0    | 0    | 21   | 712  | 846  | 846   | 3,827 | 9,721 | 11,936 | 3,708 | 31,617 | 27,176     |
| 2020 |       | 0    | 0    | 4    | 28   | 585  | 865  | 2,855 | 4,205 | 1,319 | 0      | 0     | 9,861  | 9,829      |
| 2019 |       | 0    |      |      | 93   | 606  | 820  | 2,594 | 4,134 | 900   | 0      | 0     | 9,147  | 8,247      |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

**Adams Road Pumping Station Improvements** Proiect Title

**Project Status** Future Planned ☐ Innovation Water Conc. WW Master Plan Class Lvl 1 Systems Control Center ☐ Water MP Right Sizing Class Lvl 2 Pump Station/Reservoir ☐ Reliability/Redundancy Class Lvl 3 ☐ NEWTP Repurposing Location Oakland County  $^{oxed}$  Project New To CIP 64.6 **Project Engineer/Manager** Timothy Kuhns **Director** Grant Gartrell **Project Score** 

Problem Statement The Adams Road booster pumping station was constructed in 1971 and is nearing the end of its service life. Recent condition assessment of the station indicates that there are several needs at the site that need to be addressed due to aging infrastructure. Improvements required at the site include site drive improvements, site valve replacements, building sump replacement, site drain PS replacement, structural improvements, pumping system improvements, flow metering improvements, bypass upgrades, interior valve replacement, control valve replacement, valve actuator replacement, airvacuum valve replacement, station piping improvements, service water system improvements, HVAC upgrades, plumbing upgrades, and various electrical system improvements. Cost estimates for these site improvements indicate construction cost to build a new station adjacent to the current site may be cost comparable.

Scope of Work / Project This project will be delivered using a design-bid-build project delivery method. The scope of work **Alternatives** generally includes reconstructing a new pumping station next to the existing station on the current site. The new station will be designed to bring it up to current building and electrical codes, industry standards, and best practices for operation and maintenance of pumping stations.

| CIP Alias | FY16 | FY17 | FY18 | FY19 | FY20 | FY21 | FY22 | FY23  | FY24  | FY25  | FY26   | Total  | 5-Yr Total |
|-----------|------|------|------|------|------|------|------|-------|-------|-------|--------|--------|------------|
| 2021      | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 13    | 205   | 925   | 26,393 | 27,536 | 1,143      |
| 2020      | 0    | 0    |      | 0    | 0    | 0    | 21   | 1,029 | 2,312 | 2,312 | 0      | 5,674  | 3,362      |
| 2019      | 0    |      |      |      |      |      | 21   | 1,030 | 4,625 | 0     | 0      | 5,676  | 1,051      |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

Project Title Newburgh Road Booster Pumping Station Improvements

**Project Status** Active Innovation Water Conc. WW Master Plan Class Lvl 1 Systems Control Center ☐ Water MP Right Sizing Class Lvl 2 Pump Station/Reservoir ✓ Reliability/Redundancy Class Lvl 3 □ NEWTP Repurposing Wayne County - Outside Detroit Location **Project New To CIP** 56.6 **Project Engineer/Manager** Andrew Juergens **Director** Grant Gartrell **Project Score Problem Statement** Existing pumps, motors and electrical gear are beyond useful service life. The existing pump manufacturer has discontinued maintenance support of the pumps, increasing the difficulty and cost of maintenance. Additionally, a new transmission main will be designed to allow the Newburgh Station to pump flows to the Haggerty Station reservoir. The Haggerty reservoir fill operation may require additional pumps at the Newburgh Station that are rated to higher discharge pressures. Scope of Work / Project Construct a new Newburgh Road Booster Pumping Station, including new pumps, motors, VFDs, Alternatives electrical gear, building mechanical equipment, and backup power generation. Alternatives include constructing a new Newburgh Road Booster Pumping Station on the existing site, expanding the existing site to accommodate a new station, or construction of the new station on a new site. Other Important Info Challenges: The existing site may not be large enough to construct the new Newburgh Station. Coordination with the 14-Mile Road Transmission Main Loop Contract will be required.

| CIP Alias | FY16 | FY17 | FY18 | FY19 | FY20 | FY21  | FY22  | FY23  | FY24  | FY25  | FY26  | Total  | 5-Yr Total |
|-----------|------|------|------|------|------|-------|-------|-------|-------|-------|-------|--------|------------|
| 2021      | 0    | 0    | 0    | 3    | 581  | 973   | 1,595 | 5,216 | 6,286 | 9,133 | 6,890 | 30,677 | 23,203     |
| 2020      | 0    | 0    |      | 0    | 16   | 621   | 2,396 | 2,396 | 2,429 | 4,311 | 0     | 12,169 | 7,858      |
| 2019      | 0    |      |      |      | 607  | 2,396 | 2,396 | 2,396 | 4,375 | 0     | 0     | 12,170 | 7,795      |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

**Project Title** North Service Center Pumping Station Improvements

**Project Status** Future Planned ☐ Innovation Water Conc. WW Master Plan Class Lvl 1 Systems Control Center ☐ Water MP Right Sizing Class Lvl 2 Pump Station/Reservoir ✓ Reliability/Redundancy Class Lvl 3 ☐ NEWTP Repurposing Oakland County Location  $^{oxed}$  Project New To CIP 58.2 **Project Engineer/Manager** Timothy Kuhns **Director** Grant Gartrell

**Project Score** 

Problem Statement The North Service Center was constructed in 1962 and is nearing the end of its service life.

Recent condition assessment of the station indicates that there are several needs at the site that need to be addressed due to aging infrastructure. Improvements required at the site include site drive improvements, site valve replacements, valve operator replacement, abandonment of pitot tube well, belt drain replacement, septic tank and well field replacement, electric room improvements, station wall upgrades, building structure improvements, line and reservoir pump upgrades, flow meter improvements, bypass upgrades, interior valve upgrades, control valve upgrades, valve actuator upgrades, station piping improvements, service water system upgrades, sump pump upgrades, sampling system upgrades, and various electrical improvements. Cost estimates for these site improvements indicate construction cost to build a new station adjacent to the current site may be cost comparable.

**Alternatives** 

Scope of Work / Project This project includes complete reconstruction of the North Service Center Pumping Station.

|           |      |      |      |      | •    |      |      | <u> </u> |        |        |        |        |            |
|-----------|------|------|------|------|------|------|------|----------|--------|--------|--------|--------|------------|
| CIP Alias | FY16 | FY17 | FY18 | FY19 | FY20 | FY21 | FY22 | FY23     | FY24   | FY25   | FY26   | Total  | 5-Yr Total |
| 2021      | 0    | 0    | 0    | 0    | 0    | 0    | 21   | 279      | 2,385  | 1,832  | 40,825 | 45,342 | 4,517      |
| 2020      | 0    | 0    |      | 0    | 0    | 0    | 0    | 6        | 6,325  | 18,589 | 0      | 24,920 | 6,331      |
| 2019      | 0    |      |      |      |      |      | 6    | 4,520    | 20,394 | 0      | 0      | 24,920 | 4,526      |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

Project Title North Service Center Booster Pump Station - On-Site & Off-Site Yard Piping & Valve Replacement

**Project Status** Reclassified □ Innovation Water Conc. WW Master Plan Class Lvl 1 Systems Control Center ☐ Water MP Right Sizing Class Lvl 2 Pump Station/Reservoir ✓ Reliability/Redundancy Class Lvl 3 ☐ NEWTP Repurposing Oakland County Location  $\square$  Project New To CIP 57.8 Project Engineer/Manager TBD **Director** Grant Gartrell **Project Score** Problem Statement Yard piping and valves are original to the facility and are beyond useful service life. New valves and yard piping are needed to improve reliable operation; and in order to provide reliable shutoff and water tightness during the subsequent station upgrades to the pumping equipment. Scope of Work / Project Civil Work: **Alternatives** Improvements are ncessary to the drive, drain pump station and related piping, building strucgtures Mechanical All pumps should be rehabilitated, with new mechanical seals etc. All isolation valves should be assessed and/or replaced The category 5 cost for rehabilitation is in the magnitude of 15 million dollars; to replace with new is 75. Therefore, rehabilitation is recommended. All control valves should be assessed and/or replaced All actuators should be replaced to modern standards.

Electrical:

imrpvovements to transformers, grounding, &VFDs are necessary.

Other Important Info Challenge: Maintenance of facility operations during construction.

| CIP Alias | FY16 | FY17 | FY18 | FY19 | FY20 | FY21  | FY22  | FY23 | FY24 | FY25 | FY26 | Total | 5-Yr Total |
|-----------|------|------|------|------|------|-------|-------|------|------|------|------|-------|------------|
| 2021      | 0    | 0    | 0    | 0    | 0    | 0     | 0     | 0    | 0    | 0    | 0    | 0     | 0          |
| 2020      | 0    | 0    |      | 0    | 6    | 2,300 | 2,506 | 264  | 0    | 0    | 0    | 5,076 | 5,076      |

Project Title North Service Center Booster Pump Station - On-Site & Off-Site Yard Piping & Valve Replacement

| CIP Alias | FY16 | FY17 | FY18 | FY19 | FY20 | FY21  | FY22  | FY23 | FY24 | FY25 | FY26 | Total | 5-Yr Total |
|-----------|------|------|------|------|------|-------|-------|------|------|------|------|-------|------------|
| 2019      | 0    |      |      |      | 6    | 2,300 | 2,506 | 264  |      | 0    | 0    | 5,076 | 5,076      |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

Project Title Schoolcraft Pumping Station Improvements

| Project Status | Future Planned                                                       | □ Innovation                                                                                                                                                                                                                                                                                                        |
|----------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Class LvI 1    | Water                                                                | ☐ Conc. WW Master Plan                                                                                                                                                                                                                                                                                              |
| Class LvI 2    | Systems Control Center                                               | ☐ Water MP Right Sizing                                                                                                                                                                                                                                                                                             |
| Class Lvl 3    | Pump Station/Reservoir                                               | ✓ Reliability/Redundancy                                                                                                                                                                                                                                                                                            |
| Location       | Wayne County - Outside Detroit                                       | □ NEWTP Repurposing                                                                                                                                                                                                                                                                                                 |
|                |                                                                      | ☐ Project New To CIP                                                                                                                                                                                                                                                                                                |
| Project Engine | eer/Manager Eric Kramp                                               | 56.6                                                                                                                                                                                                                                                                                                                |
|                | Director Grant Gartrell                                              | Project Score                                                                                                                                                                                                                                                                                                       |
| Probl          | the Schoolcraft Pumping                                              | on Condition Survey and Needs Assesment, significant issues were observed in Station. This needs assesment has found several significant areas of necessary on as described in the project scope fo work:                                                                                                           |
| Scope of V     | Alternatives generally include replaci<br>valves, valve operators, y | red using a design-bid-build project delivery method. The scope of work will ing existing pumps, motors, drives, electrical switchgear, motor control centers, yard piping, and yard valves with new infrastructure. Additionally, the erves the finished water reservoirs will either be rehabilitated in place or |

| CIP Alias | FY16 | FY17 | FY18 | FY19 | FY20 | FY21 | FY22  | FY23  | FY24  | FY25  | FY26 | Total  | 5-Yr Total |
|-----------|------|------|------|------|------|------|-------|-------|-------|-------|------|--------|------------|
| 2021      | 0    | 0    | 0    | 0    | 0    | 0    | 0     | 0     | 0     | 0     | 0    | 0      | 0          |
| 2020      | 0    | 0    |      | 0    | 0    | 10   | 1,958 | 2,048 | 3,048 | 3,500 | 0    | 10,564 | 7,064      |
| 2019      | 0    |      |      |      |      | 10   | 1,916 | 2,085 | 6,553 | 0     | 0    | 10,564 | 4,011      |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

Proiect Title **Wick Road Pumping Station Improvements** 

**Project Status** Future Planned ✓ Innovation Water Conc. WW Master Plan Class Lvl 1 Systems Control Center ☐ Water MP Right Sizing Class Lvl 2 Pump Station/Reservoir ✓ Reliability/Redundancy Class Lvl 3 □ NEWTP Repurposing Wayne County - Outside Detroit Location **Project New To CIP** 68.4 Project Engineer/Manager Vittoria Hogue **Director** Grant Gartrell

**Project Score** 

**Problem Statement** Wick Pump Station is currently oversized based on the demands it experiences, has poor valve isolation capabilities and much of its equipment was installed in 1981 and is passed its useful service life. This project's intent is to right size the station and replace valves and other aging equipment.

Scope of Work / Project This project will be delivered under a design-bid-build delivery method. This project's scope of work will Alternatives be rightsizing the station's pumping capacity, improving valve control and isolation, and replacing and/or upgrading equipment that is at the end of its useful life. The improvements intended to right size the station include replacing reservoir pumping units and installing another small line pump (jockey pump) to accommodate low flow conditions. Valve control and isolation work will involve replacing existing station bypass check valve and isolation valves, replacing interior valves, rehabbing pump control valves, replacing the cone valve on the reservoir fill line and replacing the hydraulic actuator control system with an electrically motor actuated system. The equipment that is at the end of its useful service life and will be replaced are as follows: effluent flow meter, the pressure reducing station for the service water system, the sump pumps, the service entrance transformers, the grounding ring, and the medium and low voltage equipment. Other miscellaneous work that will be conducted under this project will be improving the heating and ventilation, isolating potable water supply from non-potable water supply, installing lighting improvements, upgrading the existing generators, correcting the power factors, improving site driveway to accommodate semi trucks, and reconfiguring the station's discharge piping.

## Project Expenses Compared to Previous CIP Versions (All figures are in \$1,000's)

| CIP Alias | FY16 | FY17 | FY18 | FY19 | FY20 | FY21 | FY22 | FY23  | FY24  | FY25 | FY26  | Total | 5-Yr Total |
|-----------|------|------|------|------|------|------|------|-------|-------|------|-------|-------|------------|
| 2021      | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0     | 0     | 15   | 2,925 | 2,940 | 15         |
| 2020      | 0    | 0    |      | 0    | 0    | 0    | 6    | 1,009 | 4,554 | 0    | 0     | 5,569 | 5,569      |

VIII-99

Project Title Wick Road Pumping Station Improvements

| CIP Alias | FY16 | FY17 | FY18 | FY19 | FY20 | FY21 | FY22 | FY23  | FY24  | FY25 | FY26 | Total | 5-Yr Total |
|-----------|------|------|------|------|------|------|------|-------|-------|------|------|-------|------------|
| 2019      | 0    |      |      |      |      |      | 6    | 1,009 | 4,555 | 0    | 0    | 5,570 | 1,015      |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

Project Title Franklin Pumping Station Improvements

**Project Status** Future Planned Innovation Water Conc. WW Master Plan Class Lvl 1 Systems Control Center ☐ Water MP Right Sizing Class Lvl 2 Pump Station/Reservoir ☐ Reliability/Redundancy Class Lvl 3 ☐ NEWTP Repurposing Oakland County Location **Project New To CIP** 64.6 Project Engineer/Manager TBD **Director** Grant Gartrell **Project Score Problem Statement** The Franklin Booster Pumping Station was constructed in 1968 and is nearing the end of its service life. Recent condition assessment of the station indicates that there are several needs at the site that need to be addressed due to aging infrastructure. Improvements required at the site include site drive improvements, sanitary holding tank improvements, site valve replacements, mezzanine valve access improvements, electrical room upgrades, building structure improvements, pumping improvements, flow metering improvements, station bypass upgrades, interior valve upgrades, control valve replacement

**Alternatives** 

**Scope of Work / Project** This project includes complete reconstruction of the Franklin Booster Station.

new station adjacent to the current site may be cost comparable.

and rehabilitation, valve actuator system improvements, station piping improvements, service water system upgrades, sampling system upgrades, HVAC upgrades, plumbing upgrades, and various

electrical improvements. Cost estimates for these site improvements indicate construction cost to build a

| - 3       |      |      |      |      |      |      | •    | , ,   |       |        |       |        |            |
|-----------|------|------|------|------|------|------|------|-------|-------|--------|-------|--------|------------|
| CIP Alias | FY16 | FY17 | FY18 | FY19 | FY20 | FY21 | FY22 | FY23  | FY24  | FY25   | FY26  | Total  | 5-Yr Total |
| 2021      | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0     | 0     | 0      | 2,442 | 2,442  | 0          |
| 2020      | 0    | 0    |      | 0    | 0    | 0    | 0    | 0     | 0     | 10,109 | 0     | 10,109 | 0          |
| 2019      | 0    |      |      |      |      |      | 846  | 2,009 | 7,315 | 0      | 0     | 10,170 | 2,855      |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

**Project Title Imlay Pumping Station Improvements** 

**Project Status** Future Planned ✓ Innovation Water Conc. WW Master Plan Class Lvl 1 Systems Control Center ✓ Water MP Right Sizing Class Lvl 2 Class Lvl 3

Pump Station/Reservoir ✓ Reliability/Redundancy

☐ NEWTP Repurposing Lapeer County Location

 $^{oxedsymbol{oxed}}$  Project New To CIP

**Project Engineer/Manager** Eric Kramp

**Director** Grant Gartrell

58.2

### **Project Score**

Problem Statement Following completion of the 2018 Booster Station Condition Assessment, several significant issues have been documented at the Imlay Booster Station. In addition to the updates to the VFD systems identified in the FY 2020 CIP. Site/civil, mechanical, and electrical improvements have been identified far in excess of the initial 2020 CIP, including the complete replacement of all outdated electrical switchgear.

> It was recently documented that approximatley half of the reservoir fill system is working at less than full capacity, and this has revised this BCE accordingly.

Scope of Work / Project Significant improvements to the site/civil, mechanical, and electrical systems at the Imlay Booster Alternatives Station. Highlights in each discipline are indentified as follows:

Site/Civil -- Replace crumbling retaining walls. Roofing rehabilitation

Pumping -- "Right size" remaining pump and motor units based on 2015 WMPU. Rehabilitate any pumping units that are determined to be correctly sized.

Mechanical -- Improvements to HVAC. Replacement or reinforcement of all station isolation gate and butterfly valves. Rehabilitaiton or replacement of reservoir fill valves.

Electrical -- Additional and replacement of generators. Replacement of double-ended 13.2 KVA switchgear. Rehabilitation or replacement of VFDs

Other Important Info VFD size is unusual in the marketplace and cooling systems are complex for the VFDs.

| CIP Alias | FY16 | FY17 | FY18 | FY19 | FY20 | FY21 | FY22 | FY23 | FY24  | FY25   | FY26 | Total  | 5-Yr Total |
|-----------|------|------|------|------|------|------|------|------|-------|--------|------|--------|------------|
| 2021      | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0     | 0      | 13   | 13     | 0          |
| 2020      | 0    | 0    |      | 0    | 0    | 0    | 0    | 6    | 2,103 | 10,000 | 0    | 12,109 | 2,109      |

Project Title Imlay Pumping Station Improvements

| CIP Alias | FY16 | FY17 | FY18 | FY19 | FY20 | FY21 | FY22 | FY23 | FY24   | FY25 | FY26 | Total  | 5-Yr Total |
|-----------|------|------|------|------|------|------|------|------|--------|------|------|--------|------------|
| 2019      | 0    |      |      |      |      |      |      | 6    | 12,103 | 0    | 0    | 12,109 | 6          |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

**Project Title Joy Road Pumping Station Improvements** 

**Project Status** Future Planned ✓ Innovation Water Conc. WW Master Plan Class Lvl 1 Systems Control Center ☐ Water MP Right Sizing Class Lvl 2 Pump Station/Reservoir ✓ Reliability/Redundancy Class LvI 3 ☐ NEWTP Repurposing Wayne County - Outside Detroit Location **Project New To CIP** 56.6 Project Engineer/Manager Jacob Mangum

**Director** Grant Gartrell

**Project Score** 

**Problem Statement** The station is undersized with limited space for maintenance and personnel access. The main walkway inside the station is built on top of the discharge header and six stairways connected to it are non-code compliant. There is not enough room to install normal stairs. The electrical room addition was partially built on top of the pump station top slab and blocks access to the reservoir fill line valves. The pump station roof hatches leak and drip onto equipment below. The discharge header is heavily corroded and is in need of replacement. Three reservoir pumps, motors and valves are past their useful service life. Two additional VFDs and associated new motors are needed to provide operational flexibility. The station is without a flow meter and a station bypass.

Scope of Work / Project Design contract will consider life-cycle costs of rehabilitating the current station versus building a new **Alternatives** station on available land located to the south of the current station. A listing of the type of station improvements by discipline is provided below.

> Site Drive Improvements - The existing site drive geometry needs to be improved to allow for a mobile crane or semi-trailer truck.

> Site Drain Lift Station - Installation of a new site drain pump station next to existing with removal of the existing equipment

Electrical Room - A new electrical room addition is required for the new recommended VFD gear Building Structures Improvements - The existing building structures require maintenance and repair. Details of the associated interior and exterior repair items are provided within this report Pump Improvements - Rehabilitate the existing line and reservoir pumps with the addition of 2 new VFD and associated motors

New Effluent Flow Meter - Construction of a new effluent flow magmeter within the existing station Station Bypass - A station bypass is planned through replacement of existing exterior valves with motorized gate valves

Replace Interior Valves - Replace butterfly valves with metal seated gate valves and replace the Res

## Project Title Joy Road Pumping Station Improvements

No. 1 Fill line cone valve with a new 14" cone valve

Rehabilitate Control Valves - Rehabilitate pump control valves with new stuffing box packing and drain Valve Actuator System - Replace the existing control valve actuator system with a new electric motor actuator system

Piping Improvements - Replacement of piping as noted and improve suction and discharge headers in compliance with ANSI/HI 9.6.6 standard

Service Water System - Updates to the service water system are required; replacement of galvanized piping, pressure reducing station and backflow preventer

Building Sump Pumps - The building sump pumps are recommended for replacement

Heating and Ventilation - Improvements are required to the existing heating and ventilation

Plumbing and Fixtures - Improvements are needed to separate the potable water supply from the service water piping as well as other misc. improvements

Grounding - Provide new grounding ring along the outside parameter of the building and transformer yard

Variable Frequency Drives - New VFD drives for all three line pumps are recommended LED Lighting - Replace lighting with LED lighting

Instrumentation - Provide new field instruments for the station, specifically for the pumping systems Existing Generator - Update the existing generator with new fuel and bulk storage tank as well as other upgrades

| CIP Alias | FY16 | FY17 | FY18 | FY19 | FY20 | FY21 | FY22 | FY23 | FY24  | FY25 | FY26 | Total | 5-Yr Total |
|-----------|------|------|------|------|------|------|------|------|-------|------|------|-------|------------|
| 2021      | 0    | 0    | 0    | 7    | 0    | 0    | 0    | 0    | 0     | 0    | 48   | 55    | 0          |
| 2020      | 0    | 0    |      | 0    | 0    | 0    | 0    | 6    | 6,103 | 0    | 0    | 6,109 | 6,109      |
| 2019      | 0    |      |      |      |      |      |      | 6    | 6,103 | 0    | 0    | 6,109 | 6          |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

**Proiect Title** Northwest Booster Station Yard Piping Improvements

**Director** Grant Gartrell

Project Status Cancelled ☐ Innovation Water Conc. WW Master Plan Class Lvl 1 Systems Control Center ✓ Water MP Right Sizing Class Lvl 2 Pump Station/Reservoir ✓ Reliability/Redundancy Class Lvl 3 ✓ NEWTP Repurposing City of Detroit Location ☐ Project New To CIP 63.6 **Project Engineer/Manager** Eric Kramp

**Project Score** 

Problem Statement Historical pumpage data for the Northeast WTP indicates that the maximum day demands for the Northeast service area can be as high as 190 MGD. With the upcoming decommissioning of treatment at the Northeast WTP, Water Works Park will provide 150 MGD of finished water to the Northeast high lift pumping system to provide service to the existing Northeast service area, which means that 40 MGD must be delivered from other water treatment plants during the maximum day demand conditions. Upgrades to the yard piping at the Northwest Booster Station would allow flows to be pumped from the Springwells WTP through the Northwest Booster Station to the Northeast Service Area to provide a portion of the needed 40 MGD. This project will provide the needed transfer of demand loads from Water Works Park to Springwells once Northeast WTP treatment is decommissioned.

Scope of Work / Project Project includes construction of a new reservoir fill valve system to fill the existing reservoirs from Alternatives Springwells. The project also includes replacement of the isolation valves and pumping units.

Other Important Info This project highlights the need to reinforce the transmission system in order to reliably provide service after treatment is decommissioned at the Northeast WTP.

> Challenges: The project challenges include working with older piping and transmission valves. Isolation of piping to make connections to the existing piping system may be a challenge. Project History: The 2015 Water Master Plan proposed decommissioning of this booster station. However, the Master Plan assumed that the excess capacity at Water Works Park could fully supply the Northeast Service Area demands, which is not the case. For this reason, it will be necessary to use this station to provide maximum day demands from the Springwells WTP to the Northeast Service Area once decommissioning at the Northeast WTP is complete.

Project Title Northwest Booster Station Yard Piping Improvements

| CIP Alias | FY16 | FY17 | FY18 | FY19 | FY20 | FY21 | FY22  | FY23  | FY24 | FY25 | FY26 | Total | 5-Yr Total |
|-----------|------|------|------|------|------|------|-------|-------|------|------|------|-------|------------|
| 2021      | 0    | 0    | 0    | 1    | 0    | 0    | 0     | 0     | 0    | 0    | 0    | 1     | 0          |
| 2020      | 0    | 0    |      |      |      | 50   | 1,700 | 3,750 |      |      | 0    | 5,500 | 5,500      |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

Project Title Franklin Pumping Station Valve Replacement

| Project Status | Active                                    | ☐ Innovation                                                                                                                                                          |
|----------------|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Class LvI 1    | Water                                     | ☐ Conc. WW Master Plan                                                                                                                                                |
| Class LvI 2    | Systems Control Center                    | ☐ Water MP Right Sizing                                                                                                                                               |
| Class Lvl 3    | Pump Station/Reservoir                    | □ Reliability/Redundancy                                                                                                                                              |
| Location       | City of Detroit                           | □ NEWTP Repurposing                                                                                                                                                   |
|                |                                           | ✓ Project New To CIP                                                                                                                                                  |
| Project Engine | er/Manager Mini Panicker                  |                                                                                                                                                                       |
|                | <b>Director</b> Biren Saparia             | Project Score                                                                                                                                                         |
| Proble         | 0 0                                       | alves and butterfly (suction) valves that service the four (4) line pumps and two (2) the Franklin Pumping Station have exceeded their useful life and are in need of |
| Scope of W     | <b>York / Project</b> Scope of work is de | emolition and replacement of six (6) 24" manually operated gate valves, demolition                                                                                    |

Project Expenses Compared to Previous CIP Versions (All figures are in \$1,000's)

the existing gate valves.

| CIP Alias | FY16 | FY17 | FY18 | FY19 | FY20 | FY21 | FY22 | FY23 | FY24 | FY25 | FY26 | Total | 5-Yr Total |
|-----------|------|------|------|------|------|------|------|------|------|------|------|-------|------------|
| 2021      | 0    | 0    | 0    | 0    | 449  | 613  | 349  | 0    | 0    | 0    | 0    | 1,411 | 962        |

Alternatives and replacement of three (3) 24" and three (3) 30" manually operated butterfly (suction) valves,

demolition and replacement of two (2) 30" electrically actuated butterfly (suction) valves and rebuild of

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

Project Title Water Treatment Plant / Pump Station Allowance

**Project Status** Active □ Innovation Water Conc. WW Master Plan Class Lvl 1 **Programs** ☐ Water MP Right Sizing Class Lvl 2 ☐ Reliability/Redundancy **Programs** Class Lvl 3 ☐ NEWTP Repurposing **Multiple Counties** Location **Project New To CIP GLWA Water Service Area** Project Engineer/Manager Grant Gartrell **Director** Grant Gartrell **Project Score** Problem Statement This allowance is reserved for unplanned, emergency and critical project needs that need to be addressed quickly. Scope of Work / Project This project is an allowance for unplanned, critical projects that may occur at the Water Treatment

Alternatives Plants and Booster Pump Stations throughout the system. These projects may include repair,

replacement or rehabilitation of key assets as required to allow the Authority to provide sufficient water quality, quantity and pressure to meet customer demands in accordance with federal and state

requirements under the Safe Drinking Water Act.

Other Important Info Challenges: Close coordination with operations and ability to jump on needs.

| CIP Alias | FY16 | FY17   | FY18   | FY19   | FY20   | FY21   | FY22   | FY23  | FY24   | FY25   | FY26   | Total  | 5-Yr Total |  |
|-----------|------|--------|--------|--------|--------|--------|--------|-------|--------|--------|--------|--------|------------|--|
| 2021      | 0    | 0      | 0      | 9,747  | 1,813  | 1,499  | 1,359  | 1,359 | 1,363  | 1,359  | 51,665 | 70,164 | 6,939      |  |
| 2020      | 0    | 0      | 6,635  | 3,176  | 3,000  | 3,000  | 3,000  | 3,000 | 3,000  | 15,000 | 0      | 39,811 | 15,000     |  |
| 2019      | 0    | 6,777  | 1,597  | 4,296  | 3,058  | 3,144  | 3,000  | 3,000 | 15,000 | 0      | 0      | 39,872 | 16,498     |  |
| 2018      |      | 10,000 | 10,000 | 20,000 | 20,000 | 19,650 | 12,645 |       | 0      | 0      | 0      | 92,295 | 82,295     |  |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

Proiect Title As-Needed Construction Materials, Environmental Media and Special Testing Services, Construction

**Project Status** Active □ Innovation Water Conc. WW Master Plan Class Lvl 1 **Programs** ☐ Water MP Right Sizing Class Lvl 2 ☐ Reliability/Redundancy Class Lvl 3 **Programs** ☐ NEWTP Repurposing **Multiple Counties** Location **Project New To CIP** 



Example of concrete testing

**Project Engineer/Manager** Peter Fromm

**Director** Grant Gartrell

### **Project Score**

**Problem Statement** GLWA engineering and operations need a contract mechanism to obtain professional engineering services in a timely manner to investigate environmental, geotechnical and specialized engineering problems that occur on a regular basis throughout the system.

Scope of Work / Project This engineering/technical services contract involves as-needed engineering and technical services Alternatives related to geotechnical investigations and related geotechnical engineering, construction materials sampling and testing, environmental media sampling and testing, soils sampling and testing, land surveying, corrosion testing and inspection, computer-aided design, and construction inspection.

| CIP Alias | FY16 | FY17 | FY18 | FY19 | FY20  | FY21 | FY22 | FY23 | FY24 | FY25 | FY26 | Total | 5-Yr Total |
|-----------|------|------|------|------|-------|------|------|------|------|------|------|-------|------------|
| 2021      | 0    | 0    | 0    | 64   | 1,057 | 685  | 9    | 0    | 0    | 0    | 0    | 1,815 | 694        |
| 2020      | 0    | 0    | 2    | 472  | 572   | 572  | 0    | 0    | 0    | 0    | 0    | 1,618 | 1,144      |
| 2019      | 0    |      | 172  | 472  | 572   | 572  |      |      |      | 0    | 0    | 1,788 | 1,616      |
| 2018      |      |      | 500  | 500  | 500   |      |      |      | 0    | 0    | 0    | 1,500 | 1,500      |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

Proiect Title Water Treatment Plant Automation Program

**Project Status** Active

Water Class Lvl 1

**Programs** Class Lvl 2

Class Lvl 3 **Programs** 

Multiple Counties Location

□ NEWTP Repurposing

**Project New To CIP** 

Conc. WW Master Plan

☐ Water MP Right Sizing

☐ Reliability/Redundancy

☐ Innovation



**Project Engineer/Manager** Jeffrey Dorsey

**Director** Terry Daniel

## **Project Score**

**Problem Statement** The automation design and construction project comes from recommendations that identified existing station process data conditions, station needs, GLWA mission critical assets, alternative improvement options to address identified needs, recommended improvements to address the needs, prioritized projects based on the GLWA CIP scoring tool, and scheduling for making the improvements along with associated capital improvement budgets associated with each project established under CS-108.

Scope of Work / Project The purpose of this project is to implement the recommendations from CS-108 that are prioritized in five Alternatives (5) year increments with an estimated cost of \$1 million dollars per year over a twenty (20) year span.

Other Important Info Challenge: Standardization of multiple different data process equipment already installed throughout the 5 plants could be a problem.

> Project History: The GLWA Water Operations division is comprised of five water treatment plants. Each plant has process areas ranging from intake, sedimentation, chlorination, filtration and distribution systems. One of the directives from the organizational objectives is to provide the treatment plants with automation. This automation would be one of the main drivers for increased efficiency in data monitoring and regulatory reporting and reduced workload and maintenance cost. The recommendations from this assessment will be the catalyst for automation projects at the pumping stations over the next 20-year planning period. In addition, the recommendations from this assessment are required to be prioritized in 5-year increments with estimated costs.

Project Expenses Compared to Previous CIP Versions (All figures are in \$1,000's)

| CIP Alias | FY16 | FY17 | FY18  | FY19  | FY20  | FY21  | FY22  | FY23  | FY24  | FY25  | FY26 | Total  | 5-Yr Total |
|-----------|------|------|-------|-------|-------|-------|-------|-------|-------|-------|------|--------|------------|
| 2021      | 0    | 0    | 0     | 1,658 | 3,208 | 5,440 | 2,943 | 1,211 | 3,117 | 1,151 | 0    | 18,728 | 13,862     |
| 2020      | 0    | 0    | 1,377 | 61    | 1,561 | 1,561 | 1,561 | 1,514 | 105   | 0     | 0    | 7,740  | 6,302      |

VIII-111

Project Title Water Treatment Plant Automation Program

| CIP Alias | FY16 | FY17 | FY18  | FY19  | FY20  | FY21  | FY22  | FY23  | FY24 | FY25 | FY26 | Total | 5-Yr Total |
|-----------|------|------|-------|-------|-------|-------|-------|-------|------|------|------|-------|------------|
| 2019      | 0    | 13   | 1,425 | 61    | 1,561 | 1,561 | 1,561 | 1,514 | 105  | 0    | 0    | 7,801 | 6,258      |
| 2018      |      |      | 1,500 | 1,500 | 1,500 | 1,500 | 1,500 |       | 0    | 0    | 0    | 7,500 | 7,500      |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

**Project Title** Water Transmission Improvement Program

**Project Status** Active

Water Class Lvl 1

**Programs** Class Lvl 2

Class Lvl 3 **Programs** 

Multiple Counties Location

□ Innovation

Conc. WW Master Plan

☐ Water MP Right Sizing

✓ Reliability/Redundancy

☐ NEWTP Repurposing

 $^{oxedsymbol{\square}}$  Project New To CIP



Example of a failed water main

Project Engineer/Manager Todd King

**Director** Todd King

### **Project Score**

Problem Statement Assessing, rehabilitating or replacing aging transmission mains in the water system

Scope of Work / Project This project is a yearly funding allocation for the design and/or construction work for the rehabilitation or Alternatives replacement/construction of aging water transmission lines and all appurtenances, connections and

related structures.

Other Important Info O&M manuals, GIS, Section Maps and Gate Books are available for reference.

Project History: There are many critical assets that are required to be operated in the transmission system. and this yearly allowance is needed to meet the critical needs of these assets.

Challenges: May require shut down of large pumps, isolation or shutdown of large mains etc.

| CIP Alias | FY16 | FY17  | FY18   | FY19   | FY20  | FY21   | FY22  | FY23  | FY24  | FY25    | FY26   | Total   | 5-Yr Total |
|-----------|------|-------|--------|--------|-------|--------|-------|-------|-------|---------|--------|---------|------------|
| 2021      | 0    | 0     | 0      | 1,643  | 1,781 | 1,776  | 1,776 | 1,776 | 1,781 | 1,046   | 16,578 | 28,157  | 8,155      |
| 2020      | 0    | 0     | 156    | 1,000  | 1,500 | 2,000  | 2,000 | 2,000 | 2,000 | 100,000 | 0      | 110,656 | 9,500      |
| 2019      | 0    | 1,075 | 229    | 1,000  | 1,500 | 2,000  | 2,000 | 2,000 | 2,000 | 0       | 0      | 11,804  | 8,500      |
| 2018      |      |       | 10,000 | 11,000 | 9,000 | 11,000 | 9,000 |       | 0     | 0       | 0      | 50,000  | 50,000     |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

Project Title Transmission System Valve Rehabilitation and Replacement Program

Project Status Active

□ Innovation
□ Conc. WW Master Plan
□ Class Lvl 2 Programs
□ Water MP Right Sizing
□ Reliability/Redundancy
□ NEWTP Repurposing
□ Project New To CIP



A large valve for a transmission pipe

Project Engineer/Manager Todd King

**Director** Todd King

### **Project Score**

Problem Statement Replacement/Rehabilitation of GLWA Transmission System Gate Valves will aid in implementing a regular

valve exercising program as recommended by AWWA as well as increase the reliability of the

transmission system.

Scope of Work / Project Evaluate the existing conditions, provide the necessary replacement/ rehabilitation option, design and

Alternatives implement them.

Other Important Info GIS, Section Maps and Gate Books are available for reference.

Project History: There are critical valves that are required to be closed during a main break or an emergency situation. There has not been a regular valve exercising program in past 15 years in the DWSD/GLWA System.

Challenges: May require shutdown of large transmission mains.

| CIP Alias | FY16 | FY17 | FY18  | FY19  | FY20  | FY21  | FY22  | FY23  | FY24  | FY25   | FY26  | Total  | 5-Yr Total |
|-----------|------|------|-------|-------|-------|-------|-------|-------|-------|--------|-------|--------|------------|
| 2021      | 0    | 0    | 0     | 7,159 | 642   | 1,177 | 3,119 | 3,175 | 3,210 | 3,203  | 4,784 | 26,469 | 13,884     |
| 2020      | 0    | 0    | 3,430 | 4,000 | 4,000 | 3,274 | 4,000 | 4,000 | 4,000 | 10,000 | 0     | 36,704 | 19,274     |
| 2019      | 0    |      | 2,000 | 4,000 | 4,000 | 3,274 | 726   | 4,000 | 4,000 | 0      | 0     | 22,000 | 16,000     |
| 2018      |      |      | 2,930 | 3,100 | 3,100 | 3,100 | 3,100 |       | 0     | 0      | 0     | 15,330 | 15,330     |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

Proiect Title Water Transmission Main Asset Assessment Program

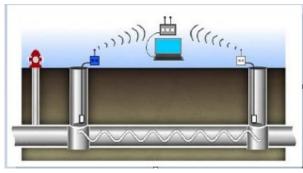
**Project Status** Active Water

Class Lvl 1

**Programs** Class Lvl 2

Class Lvl 3 **Programs** 

Location Multiple Counties ✓ Innovation


Conc. WW Master Plan

☐ Water MP Right Sizing

☐ Reliability/Redundancy

☐ NEWTP Repurposing

**Project New To CIP** 



Example of pressure main assessment technology

**Project Engineer/Manager** Todd King

**Director** Todd King

### **Project Score**

**Problem Statement** Many of the water mains serving the GLWA service area were installed in the early part of the 20th century or the later part of the 19th century, and are now reaching the end of their useful life span. This project will pilot and utilize new technologies to accurately identify the condition of these buried assets by constructing access ways for inspection and the installation of sensors and fiber optic cables for realtime monitoring of condition. It's essential for cost-efficient repair and replacement programs which in turn will increase the reliability and performance of the system.

Scope of Work / Project Construct access structures and utilize new technology to evaluate the existing conditions of the **Alternatives** transmission system. Construction of in place sensors and cables may be necessary to adequately access condition. Provide the necessary recommendation for replacement and rehabilitation.

Other Important Info \*Innovation Note: Consider new techniques for water main assessment.

GIS, Section Maps and Gate Books are available for reference.

Challenges: Gaining access to inspect buried pipes is difficult, disruptive and costly. However, there are ways to monitor and test the condition of the piping and methods of performing condition assessment. Project History: There are many critical assets that are required to be operated in the transmission main, but the authority doesn't know the existing conditions. For planning purposes, information about the actual condition of pipes is needed and there has not been a regular condition assessment program related to the transmission System (pipes greater than 24").

## Project Expenses Compared to Previous CIP Versions (All figures are in \$1,000's)

| CIP Alias | FY16 | FY17 | FY18 | FY19  | FY20  | FY21  | FY22  | FY23  | FY24  | FY25   | FY26   | Total  | 5-Yr Total |
|-----------|------|------|------|-------|-------|-------|-------|-------|-------|--------|--------|--------|------------|
| 2021      | 0    | 0    | 0    | 0     | 54    | 54    | 54    | 775   | 2,183 | 4,183  | 23,450 | 30,753 | 7,249      |
| 2020      | 0    | 0    |      | 2,500 | 3,000 | 4,000 | 4,000 | 5,000 | 5,000 | 25,000 | 0      | 48,500 | 21,000     |

VIII-115

Project Title Water Transmission Main Asset Assessment Program

| CIP Alias | FY16 | FY17 | FY18  | FY19  | FY20  | FY21  | FY22  | FY23  | FY24  | FY25 | FY26 | Total  | 5-Yr Total |
|-----------|------|------|-------|-------|-------|-------|-------|-------|-------|------|------|--------|------------|
| 2019      | 0    |      | 2,627 | 2,501 | 3,001 | 4,001 | 4,001 | 5,001 | 5,001 | 0    | 0    | 26,133 | 18,505     |
| 2018      |      |      | 2,626 | 2,000 | 2,000 | 2,000 | 2,000 |       | 0     | 0    | 0    | 10,626 | 10,626     |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

Project Title System-Wide Finished Water Reservoir Inspection, Design and Rehabilitation

**Project Status** Active □ Innovation Water Conc. WW Master Plan Class Lvl 1 **Programs** ☐ Water MP Right Sizing Class Lvl 2 ✓ Reliability/Redundancy Class Lvl 3 **Programs** ☐ NEWTP Repurposing Multiple Counties Location  $^{oxed}$  Project New To CIP Project Engineer/Manager John McCallum **Director** Grant Gartrell **Project Score** Problem Statement This project merges all CIPs associated with Reservoir Rehabilitation into a single, compreshensive CIP Project. This new project is being managed against a overall repair schedule to mitigate conflicts in the transmission system so as to minimize the impact for MDEQ Mandated inspections and repairs to GLWA Reservoirs at Booster Stations and Water Treatment Plants, ECK 7/2018

Adjust the cost of this CIP this fiscal year to account for the contract award amount for engineering services related to this CIP, as well as competitive, public bid prices received for rehabilitation work on 10 of the 33 system-wide reservoirs. JPM 8/5/2019

**Scope of Work / Project** The project will provide inspection, rehabilitation, and maintenance for all 33 finished (potable) reservoirs **Alternatives** in the GLWA system on a MDEQ mandated 5 year revolving inspection cycle.

| •         |      | •    |       |       | •     | _     |       | •     |       |        |        |        |            |
|-----------|------|------|-------|-------|-------|-------|-------|-------|-------|--------|--------|--------|------------|
| CIP Alias | FY16 | FY17 | FY18  | FY19  | FY20  | FY21  | FY22  | FY23  | FY24  | FY25   | FY26   | Total  | 5-Yr Total |
| 2021      | 0    | 0    | 0     | 457   | 2,160 | 6,087 | 6,087 | 6,087 | 4,100 | 11,366 | 22,732 | 59,076 | 33,727     |
| 2020      | 0    | 0    |       | 482   | 5,128 | 5,211 | 5,182 | 3,888 | 5,495 | 33,778 | 0      | 59,164 | 24,904     |
| 2019      | 0    |      | 39    | 472   | 753   | 4,510 | 4,340 | 4,340 | 4,645 | 0      | 0      | 19,099 | 14,415     |
| 2018      |      | 50   | 3,300 | 2,550 | 2,550 | 2,550 |       |       | 0     | 0      | 0      | 11,000 | 10,950     |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

Project Title Suburban Water Meter Pit Rehabilitation and Meter Replacement

**Project Status** Active □ Innovation Water Conc. WW Master Plan Class Lvl 1 **Programs** ☐ Water MP Right Sizing Class Lvl 2 ☐ Reliability/Redundancy Class Lvl 3 **Programs** ☐ NEWTP Repurposing Multiple Counties Location **Project New To CIP** Example of a Water Meter Project Engineer/Manager Chandan Sood **Director** Chandan Sood **Project Score** Problem Statement Improving meter data reliability, ensuring accurate billing, improving customer service and allow high quality analysis of the system Scope of Work / Project The Proposed improvements should include the following; The replacements of meters that have Alternatives surpassed their life expectancy, and or the current flow rates exceed the mechanical limits of the meter. Installing entrance hatches that allow safer ingress, and egress, and that can be locked for security. Sand blasting and painting of piping and walls. Waterproofing meter vaults to keep the ground water out. Provide a proper floor slope in meter chambers that allow water to settle in puddles. Repairing damage sump pump discharge lines. Repairing any structural deficiencies in the meter chambers, loose concrete, bricks, and ladder rungs. Installing access tunnels for the meter location that require extensive traffic control, or are very dangerous to enter because of the entrance location. Upgrading and repairing damaged electrical fixtures in the meter vaults. Weather proofing the meter control cabinets, chalking, replacing rubber door seals, replacing missing foam insulation, replacing upgrading cabinet heaters, repairing damaged locking mechanisms. Improving, or paving the access roads, and or parking for meter locations that have limited parking or get overgrown with foliage in the summer time. Other Important Info Challenges: Requires temporary shutdown of the water supply through the meter. Project History: Currently GLWA provides water service to 126 communities, and measures flows and volumes by the utilization of 290 wholesale water meters now in service; 17 of these meters are venturiorifice type meters, 26 of these are dual venturi type meters, 48 of these single venturi type meters, 97 of these are magnetic flow type meters, and 102 of these are turbine or mechanical type meters. Meters were installed between 1945 through 1975 under various projects and tasks.

Project Title Suburban Water Meter Pit Rehabilitation and Meter Replacement

| CIP Alias | FY16 | FY17 | FY18  | FY19  | FY20  | FY21  | FY22  | FY23  | FY24  | FY25   | FY26 | Total  | 5-Yr Total |
|-----------|------|------|-------|-------|-------|-------|-------|-------|-------|--------|------|--------|------------|
| 2021      | 0    | 0    | 0     | 1,238 | 2,542 | 2,535 | 2,535 | 1,139 | 121   | 120    | 71   | 10,301 | 6,450      |
| 2020      | 0    | 0    |       | 3,000 | 4,000 | 4,000 | 3,997 | 4,100 | 4,200 | 20,500 | 0    | 43,797 | 20,297     |
| 2019      | 0    |      | 410   | 4,613 | 3,690 | 3,690 | 3,997 | 4,100 |       | 0      | 0    | 20,500 | 20,090     |
| 2018      |      | 500  | 4,000 | 4,000 | 4,000 | 4,000 | 4,000 |       | 0     | 0      | 0    | 20,500 | 20,000     |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

Project Title LED Lighting & Lighting Control Improvements at All Water Facilities

| Project Status | Cancelled     |                                | ✓ Innovation                                                                                                                                                                                                    |
|----------------|---------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Class Lvl 1    | Water         |                                | ☐ Conc. WW Master Plan                                                                                                                                                                                          |
| Class Lvl 2    | Programs      |                                | □ Water MP Right Sizing                                                                                                                                                                                         |
| Class LvI 3    | Programs      |                                | □ Reliability/Redundancy                                                                                                                                                                                        |
| Location       | Multiple Cou  | unties                         | □ NEWTP Repurposing                                                                                                                                                                                             |
|                |               |                                | ☐ Project New To CIP                                                                                                                                                                                            |
| Project Engine | er/Manager    | Eric Griffin                   |                                                                                                                                                                                                                 |
|                | Director      | John Norton                    | Project Score                                                                                                                                                                                                   |
| Proble         | em Statement  | lighting type systems will red | most facilities are energy inefficient. Replacement with new, modern LED duce electrical usage and costs. Regulatory changes by ASHRAE are required are safety concearns with egress lighting at our facilities |
| Scope of W     |               |                                | tures with new lighting fixtures at the water plants and water booster pumping entrol to new ASHRAE standards and Egress lighting to meet NFPA 101 Life                                                         |
| Other I        | mportant Info | Updates to ASHRAE Lighting     | g Control and NFPA-101 Life safety code make this of greater importance.                                                                                                                                        |
|                |               |                                |                                                                                                                                                                                                                 |

|   |           |      | p c  |      |      |      |      | · · · · · · · · · | ,,,,,,, |       |       |      |       |            |
|---|-----------|------|------|------|------|------|------|-------------------|---------|-------|-------|------|-------|------------|
|   | CIP Alias | FY16 | FY17 | FY18 | FY19 | FY20 | FY21 | FY22              | FY23    | FY24  | FY25  | FY26 | Total | 5-Yr Total |
| 2 | 2021      | 0    | 0    | 0    | 0    | 0    | 0    | 0                 | 0       | 0     | 0     | 0    | 0     | 0          |
| 2 | 2020      | 0    | 0    |      | 0    | 0    | 0    | 0                 | 693     | 693   | 4,401 | 0    | 5,787 | 1,386      |
| 2 | 2019      | 0    |      |      |      |      | 520  | 693               | 693     | 5,094 | 0     | 0    | 7,000 | 1,906      |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

Project Title Roof Replacement at WWP, SP, LH, NE, SW, NSC, Orion, Franklin, and Conner Creek Facilities

| Project Status | Active        |                                                                                                                                 | ☐ Innovation                                                           |                                                                                                                                                          |
|----------------|---------------|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Class Lvl 1    | Water         |                                                                                                                                 | ☐ Conc. WW Master Plan                                                 |                                                                                                                                                          |
| Class Lvl 2    | Programs      |                                                                                                                                 | ☐ Water MP Right Sizing                                                |                                                                                                                                                          |
| Class LvI 3    | Programs      |                                                                                                                                 | ☐ Reliability/Redundancy                                               |                                                                                                                                                          |
| Location       | Multiple Cou  | unties                                                                                                                          | ☐ NEWTP Repurposing                                                    |                                                                                                                                                          |
|                |               |                                                                                                                                 | ☐ Project New To CIP                                                   |                                                                                                                                                          |
| Project Engine | er/Manager    | Nick Hoffman                                                                                                                    |                                                                        |                                                                                                                                                          |
|                | Director      | Grant Gartrell                                                                                                                  | Project Score                                                          |                                                                                                                                                          |
|                |               | years based on the CS-1674                                                                                                      | 4 Roofing Assesment Contracted to interiors, sensitive electrications. | nined to need replacement over the next 5 to 7 t. Replacement is needed to protect the ical equipment and process mechanical                             |
| Scope of W     | •             | Water Works Park- High Lift<br>roof<br>Springwells - Turbine House,<br>Conner Sewage Lift Station<br>Franklin Water Booster Pum | , built-up roof, 1930 Machine F<br>, built-up roof                     | n roof, Raw Water Booster Pump Station, built-up Room                                                                                                    |
| Other In       | mportant Info | ·                                                                                                                               | •                                                                      | the 1,682,727 square feet of roofing at the water pooster pumping stations is \$33,142,054.                                                              |
|                | Alternatives  | 2016 that included all roofs stations and 11 sewage put                                                                         | located at GLWA's 5 water tr                                           | and completed under Contract No. CS-1674 in<br>eatment plants, 19 water booster pumping<br>8 separate roof sections totaling 1,682,727<br>sment project. |

| CIP Alias | FY16 | FY17 | FY18 | FY19 | FY20  | FY21 | FY22 | FY23  | FY24  | FY25  | FY26   | Total  | 5-Yr Total |
|-----------|------|------|------|------|-------|------|------|-------|-------|-------|--------|--------|------------|
| 2021      | 0    | 0    | 0    | 71   | 2,828 | 173  | 317  | 2,907 | 3,126 | 2,255 | 11,996 | 23,673 | 8,778      |

Project Title Roof Replacement at WWP, SP, LH, NE, SW, NSC, Orion, Franklin, and Conner Creek Facilities

| CIP Alias | FY16 | FY17 | FY18 | FY19 | FY20  | FY21 | FY22 | FY23  | FY24   | FY25  | FY26 | Total  | 5-Yr Total |
|-----------|------|------|------|------|-------|------|------|-------|--------|-------|------|--------|------------|
| 2020      | 0    | 0    | 50   | 0    | 2,657 | 0    | 0    | 0     | 2,000  | 2,000 | 0    | 6,707  | 4,657      |
| 2019      | 0    |      |      | 111  | 986   | 210  | 24   | 1,159 | 24,756 | 0     | 0    | 27,246 | 2,490      |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30



OVERVIEW

II CIP DEVELOPMENT + PROCESS

III FINANCE

IV CIP SUMMARY

V PRIORITIZATION

VI PROJECTS BY CATEGORY VII TEN-YEAR OUTLOOK VIII PROJECT DESCRIPTIONS

IX GLOSSARY

# SECTION 2 WASTEWATER

Proiect Title WRRF Rehabilitation of Primary Clarifiers Rectangular Tanks, Drain Lines, Electrical/Mechanical Building and

**Project Status** Active □ Innovation Wastewater Conc. WW Master Plan Class Lvl 1 **WRRF** ☐ Water MP Right Sizing Class Lvl 2 **Primary Treatment** ✓ Reliability/Redundancy Class Lvl 3 □ NEWTP Repurposing City of Detroit Location **Project New To CIP** 



Pipe Gallery

Project Engineer/Manager Nicolas Nicolas

**Director** Philip Kora

**Project Score** 

**Problem Statement** Rehabilitation for meeting NPDES Permit and NEC requirements

Scope of Work / Project The work to be completed under this project will include installing ventilation and atmospheric control

**Alternatives** for the pipe gallery; providing new lights and emergency lights, etc.. This work also includes rehabilitation of 12 drain lines from rectangular clarifiers 3-12, circular clarifiers 16 and 16, installation of large manhole with sump pumps to collect drainage and discharge to clarifier, and concrete crack repairs, and rehabilitation work in Electrical/Mechanical Building.

Other Important Info Challenges: N/A - Active

| CIP Alias | FY16 | FY17   | FY18   | FY19   | FY20  | FY21  | FY22 | FY23 | FY24 | FY25 | FY26 | Total  | 5-Yr Total |
|-----------|------|--------|--------|--------|-------|-------|------|------|------|------|------|--------|------------|
| 2021      | 0    | 0      | 0      | 45,069 | 6,225 | 3,775 | 0    | 0    | 0    | 0    | 0    | 55,069 | 3,775      |
| 2020      | 0    | 0      | 25,098 | 18,724 | 7,982 | 3,054 | 0    | 0    | 0    | 0    | 0    | 54,858 | 11,036     |
| 2019      | 0    | 10,243 | 12,983 | 16,107 | 8,671 | 6,033 |      |      |      | 0    | 0    | 54,037 | 30,811     |
| 2018      |      | 10,848 | 12,097 | 20,990 | 7,968 |       |      |      | 0    | 0    | 0    | 51,903 | 41,055     |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

Project Title WRRF PS No. 2 Pumping Improvements - Phase 1

**Project Status** Active

Class Lvl 1 Wastewater

Class Lvl 2 WRRF

Class LvI 3 Primary Treatment

**Location** City of Detroit

☐ Innovation

Conc. WW Master Plan

☐ Water MP Right Sizing

✓ Reliability/Redundancy

☐ NEWTP Repurposing

 $^{ot}$  Project New To CIP



Pump Station 2

**Project Engineer/Manager** Vinod Sharma

**Director** Philip Kora

### **Project Score**

Problem Statement Correct drifting issues of pumps and meet long term wet weather capacity needs

Scope of Work / Project This project involves evaluating and recommending alternatives for providing more reliable pumping

Alternatives capacity at Pump Station No. 2 for Pumps Nos. 11 and 14.

Other Important Info Challenges: N/A - Active

| CIP Alias | FY16 | FY17  | FY18  | FY19  | FY20  | FY21 | FY22 | FY23 | FY24 | FY25 | FY26 | Total | 5-Yr Total |
|-----------|------|-------|-------|-------|-------|------|------|------|------|------|------|-------|------------|
| 2021      | 0    | 0     | 0     | 1,912 | 1,860 | 0    | 0    | 0    | 0    | 0    | 0    | 3,772 | 0          |
| 2020      | 0    | 0     | 322   | 2,268 | 1,222 | 0    | 0    | 0    | 0    | 0    | 0    | 3,812 | 1,222      |
| 2019      | 0    | 109   | 599   | 2,454 | 621   |      |      |      |      | 0    | 0    | 3,783 | 3,075      |
| 2018      | 456  | 1,157 | 1,304 | 616   |       |      |      |      | 0    | 0    | 0    | 3,533 | 1,920      |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

Project Title WRRF PS #1 Rack & Grit and MPI Sampling Station 1 Improvements

**Project Status** Active

Class Lvl 1 Wastewater

Class Lvl 2 WRRF

Class LvI 3 Primary Treatment

**Location** City of Detroit

Innovation

Conc. WW Master Plan

☐ Water MP Right Sizing

✓ Reliability/Redundancy

☐ NEWTP Repurposing

Project New To CIP



Rack and Grit

**Project Engineer/Manager** Partho Ghosh

**Director** Philip Kora

# **Project Score**

Problem Statement Rehabilitate aging rack and grit system for efficient removal of grit to reduce loading on downstream

process areas

Scope of Work / Project The scope of work includes modifications and improvements of the existing grit and screening handling

Alternatives system at Pump Station 1 and MPI Sampling Station 1.

Other Important Info Challenges: N/A - Active

| CIP Alias | FY16  | FY17   | FY18   | FY19   | FY20  | FY21 | FY22 | FY23 | FY24 | FY25 | FY26 | Total  | 5-Yr Total |
|-----------|-------|--------|--------|--------|-------|------|------|------|------|------|------|--------|------------|
| 2021      | 0     | 0      | 0      | 26,502 | 1,771 | 0    | 0    | 0    | 0    | 0    | 0    | 28,273 | 0          |
| 2020      | 0     | 0      | 24,505 | 1,824  | 869   | 0    | 0    | 0    | 0    | 0    | 0    | 27,198 | 869        |
| 2019      | 0     | 20,944 | 3,648  | 2,752  | 303   |      |      |      |      | 0    | 0    | 27,647 | 3,055      |
| 2018      | 13887 | 2,303  | 2,652  | 2,652  |       |      |      |      | 0    | 0    | 0    | 21,494 | 5,304      |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

Proiect Title WRRF PS No. 2 Improvements Phase II

**Project Status** Future Planned

Wastewater Class Lvl 1

**WRRF** Class Lvl 2

**Primary Treatment** Class LvI 3

City of Detroit Location

☐ Innovation

Conc. WW Master Plan

☐ Water MP Right Sizing

✓ Reliability/Redundancy

☐ NEWTP Repurposing

**Project New To CIP** 



Main Raw Sewage Pumps at Pump Station 2

Project Engineer/Manager Alfredo Lava

**Director** Dan Alford

# **Project Score**

72.8

Problem Statement This project will improve the pump reliability of PS-2 to meet the NPDES permit flow capacity requirements.

Scope of Work / Project The preliminary scope of this project is to provide basis of design (study) report for Alternatives rehabilitation/rebuilding plan for existing pump and its control and any associated equipment. The study will look into the addition of VFD to the three constant speed pumps. The study will not be limited to increasing the capacity of existing pumps to meet the long-term goal for wet weather capacity. The Scope also include: Provide engineering design for rehabilitation/rebuilding of the pumps, replacement of HVAC System, I&C Improvements (i.e. automation, etc.), structural, architectural and electrical improvement, provide design for any recommendation made by the study report. The services during construction is: provide construction assistance, such as review of shop drawings, response to RFIs, attending progress meetings, verifying and assisting GLWA for any changes requested by the contractor, etc.

Construction will follow after the completion of design.

Other Important Info Challenges: Shutdowns of the pumps to be rehabilitated will require co-ordination with operations and careful planning to meet NPDES permit requirements for the flow capacity during the construction phase.

> Project History: Pump Station No. 2 was built in 1994. Seven out of eight pumps were running since 1994. These pumps never attained the design capacity due to an unidentified drifting problem. The eighth pump (Pump No. 10) was installed under PC-740 with a modified suction elbow that provided better pumping capacity. The VFDs for five (5) pumps were also replaced in 2005 under PC-744 contract. A new impeller was installed on Pump No. 9 and a rebuilt impeller was installed on Pump No. 16 in 2008, which provided sufficient improvements in pumping capacity. To mitigate the declining of pumping

Project Title WRRF PS No. 2 Improvements Phase II

capacity, DWSD initiated a CS-1444/PC-795 PS-2 Pumping Improvements project to rehabilitate Pump No. 11 and Pump No. 14 to solidify the long-term wet weather capacity of 1700 MGD. It was recommended to rehabilitate the remaining pumps with energy efficient, and more reliable control systems that require less maintenance.

| CIP Alias | FY16 | FY17 | FY18 | FY19  | FY20  | FY21  | FY22  | FY23  | FY24  | FY25   | FY26   | Total  | 5-Yr Total |
|-----------|------|------|------|-------|-------|-------|-------|-------|-------|--------|--------|--------|------------|
| 2021      | 0    | 0    | 0    | 1     | 0     | 0     | 0     | 471   | 2,245 | 949    | 30,384 | 34,050 | 3,665      |
| 2020      | 0    | 0    | 0    | 0     | 0     | 684   | 711   | 611   | 8,668 | 10,925 | 0      | 21,599 | 10,674     |
| 2019      | 0    |      | 7    |       | 515   | 115   | 9,294 | 9,101 | 3,055 | 0      | 0      | 22,087 | 19,025     |
| 2018      |      |      | 600  | 1,700 | 4,800 | 3,700 |       |       | 0     | 0      | 0      | 10,800 | 10,800     |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

Proiect Title **WRRF PS No. 1 Improvements** 

**Project Status** Active

Wastewater Class Lvl 1

**WRRF** Class Lvl 2

**Primary Treatment** Class Lvl 3

City of Detroit Location

✓ Innovation

Conc. WW Master Plan

☐ Water MP Right Sizing

✓ Reliability/Redundancy

□ NEWTP Repurposing

**Project New To CIP** 



Pump Station 1 Interior

Project Engineer/Manager Jason Williams

**Director** Dan Alford

**Project Score** 

**75** 

Problem Statement Condition assessment and rehabiliation of all pumps at Pump Station No. 1 to increase efficiency and

reliability.

Scope of Work / Project The study/design work will identify all major parts including impellers and wear rings to be refurbished for Alternatives each pump and all related appurtenances. The construction services will provide rehabilitation and/or replacement as determined in the study and design along with the sequencing of pump shutdown throughout the rehabilitation period.

> Investigation and evaluation of all the inlet gates, outlet gates and associated actuators, Motor Control Centers (MCCs) and other related equipment, HVAC system, Control System and provide recommendation and design for rehabilitation or replacement are also part of the scope.

Other Important Info Challenges: Maintaining the adequate pumping capacity during construction.

Project History: GLWA operate two raw sewage pumping stations: PS-1 and PS-2, at the Water Resources Recovery Facility, Raw wastewater (influent) from the collection system flows to the Influent Pumping Station through the Detroit River Interceptor (16 feet in diameter), Oakwood Interceptor (12.5 feet in diameter) and North Interceptor East Arm (NIEA). The main Influent Pumping Station No. 1 (PS-1) was constructed in the 1930s. PS-1 has eight constant speed pumps of various capacities (six were installed in the 1940s and two more were added in 1956) and has a Firm Capacity (largest pump out of service) of 1,225 MGD during wet weather event. The Influent Pumping Station No. 2 (PS-2) has eight raw sewage pumps (combination of variable and constant speed pumps) with a Firm Capacity of 805 MGD during wet weather event.

The pumps at PS-1 were rehabilitated in 2004 and 2005 under PC-744 project (DWP 1007).

Project Title WRRF PS No. 1 Improvements

| CIP Alias | FY16 | FY17 | FY18 | FY19  | FY20  | FY21  | FY22  | FY23  | FY24   | FY25  | FY26 | Total  | 5-Yr Total |
|-----------|------|------|------|-------|-------|-------|-------|-------|--------|-------|------|--------|------------|
| 2021      | 0    | 0    | 0    | 6     | 929   | 645   | 551   | 8,532 | 12,772 | 3,341 | 0    | 26,776 | 25,841     |
| 2020      | 0    | 0    |      | 498   | 1,803 | 2,325 | 8,424 | 8,370 | 811    | 84    | 0    | 22,315 | 21,733     |
| 2019      | 0    |      |      | 500   | 1,800 | 2,462 | 9,394 | 9,245 | 719    | 0     | 0    | 24,120 | 23,401     |
| 2018      |      |      | 600  | 5,350 | 5,125 | 2,054 |       |       | 0      | 0     | 0    | 13,129 | 13,129     |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

Proiect Title WRRF PS #2 Bar Racks Replacements and Grit Collection System Improvements

**Project Status** Active

Wastewater Class Lvl 1

**WRRF** Class Lvl 2

**Primary Treatment** Class Lvl 3

City of Detroit Location

✓ Innovation

Conc. WW Master Plan

☐ Water MP Right Sizing

✓ Reliability/Redundancy

☐ NEWTP Repurposing

**Project New To CIP** 





**Project Engineer/Manager** Jason Williams

65.2

WRRF Pumping Station 2: Bar Racks and Grit Collection System

**Director** Dan Alford

# **Project Score**

Problem Statement Replacement of all bar racks and associated equipment and addition of fine screens (1/4 inch) for more reliable and efficient screenings removal. Addition of screenings washing and compaction to reduce truck traffic and cost of disposal. Improvement of grit collection system with more efficient, state-of-theart, grit collection and pumping system, and grit washing and classification to reduce truck traffic and cost of disposal. Improvements to the grit screenings and grit removal and handling systems will improve the performance of all downstream processes, reduce maintenance costs and increase life of downstream equipment.

Scope of Work / Project The work consists of evaluation, design and construction of the replacement of the existing bar racks Alternatives and ancillary equipment and gates, addition of new fine screens (1/4 inch) downstream of the bar racks, addition of screenings washing and compaction, inclusion of stacked tray grit removal or other technology within the aerated grit tank and grit washing and/or classification. Work also includes the upgrade and expansion as necessary of the existing building that houses the screens and the screenings and grit handling and load out, including all lighting, HVAC, plumbing, electrical, and architectural work. New instrumentation and controls for operations and monitoring will also be provided. System shall be designed to meet long-term wet weather capacity requirements at PS2.

Other Important Info \*Innovation note: Include new grit removal equipment rather than replacement in kind (cyclonic). The CIP Project Proposal – CIP 1314 – "Replacement of Bar Racks at Pump Station No. 2" and CIP Project Proposal – CIP 1223 – "Rehabilitation of Grit and Screening System at PS-2 and Rehabilitation of Sampling Sites at WWTP" are combined into one project under CIP 1314. That combined new budget for CIP 1314 (CIP 1223 and 1314) has a total amount of \$11,617,000. The design of "Rehabilitation of Sampling Sites" is completed and will be bid separately for construction. The previous design for Bar Rack System by Sigma under As Needed Engineering Services Contact task order will not proceed for construction as designed. An engineering decision to have a fresh look and start new study, design and construction project

VIII-131

Project Title WRRF PS #2 Bar Racks Replacements and Grit Collection System Improvements

through this CIP project will proceed. The original budget for CIP-1314 is \$3.667M. The \$6.0M CIP budget transfer was made from CIP-1223. The new revised CIP-1314 budget is \$9.667

Challenges: Maintaining the MDEQ-NPDES required capacity during the construction phase of the project.

Project History: The Pump Station No. 2 Rack and Grit Collection system have been in service for almost twenty years. The equipment are near the end of its useful life. Improper transport of collected screenings has been ongoing problem and rags and other floatable materials are not screened thoroughly.

The condition and reliability of the Pump Station No. 2 Grit System was inspected and the grit crane was upgraded in 2002 by PC-744/DWP-1006.

- ☐ The HVAC system was found in good condition but needs some rehabilitation due to its ending life cycle.
- ☐ Modifications are needed to the existing Grit removal system because of the draining issues. Grit Chambers cannot be emptied due to clogged drains.
- ☐ Grit carry over cause deterioration of the downstream process and equipment
- ☐ Rehabilitation/Replacement of screening belt since the equipment is nearing to its useful life.
- ☐ Rehabilitation of Grit Channel Drain Gate stems.

The bar screen foundations, screen frames, and conveyance chutes in PS-2 have been in service for approximately twenty years.

|           |      |      |      |       |       |       | ,     | , ,   |        |        |       |        |                 |
|-----------|------|------|------|-------|-------|-------|-------|-------|--------|--------|-------|--------|-----------------|
| CIP Alias | FY16 | FY17 | FY18 | FY19  | FY20  | FY21  | FY22  | FY23  | FY24   | FY25   | FY26  | Total  | 5-Yr Total      |
| 2021      | 0    | 0    | 0    | 1     | 256   | 3,098 | 7,546 | 2,120 | 20,899 | 34,034 | 8,642 | 76,596 | 67,697          |
| 2020      | 0    | 0    |      | 6     | 269   | 1,329 | 2,039 | 6,306 | 7,838  | 49     | 0     | 17,836 | 1 <i>7,7</i> 81 |
| 2019      | 0    |      |      | 7     | 402   | 1,980 | 2,404 | 6,956 | 8,814  | 0      | 0     | 20,563 | 11,749          |
| 2018      |      |      | 650  | 2,900 | 3,300 | 2,817 |       |       | 0      | 0      | 0     | 9,667  | 9,667           |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

Proiect Title WRRF Rehabilitation of Ferric Chloride Feed System in PS-1 and Complex B Sludge Lines

**Project Status** Active

Wastewater Class Lvl 1

**WRRF** Class Lvl 2

**Primary Treatment** Class LvI 3

City of Detroit Location

✓ Innovation

Conc. WW Master Plan

☐ Water MP Right Sizing

✓ Reliability/Redundancy

☐ NEWTP Repurposing

**Project New To CIP** 





Project Engineer/Manager Ravi Yelamanchi

**Director** Dan Alford

74.2

Ferric Chloride Tanks at Pump Station 1

# **Project Score**

**Problem Statement** The Ferric Chloride Systems at PS-1 is used to reduce phosphorus to the required permit levels. The system, which include chemical storage tanks, secondary containment, valves and piping is in need of rehabilitation. The Complex B sludge lines are clogged due to Struvite and need rehabilitation/replacement.

Scope of Work / Project The scope of work will include study design and construction for the ferric chloride feed system at PS-1. Alternatives Specifically it will include: a study to evaluate alternative locations for application of ferric chloride, a pilot study to test alternative application points, and inspection of the existing chemical feed systems, a study to provide recommendations for system modifications and improvements, design of recommended system improvements, and construction of chemical feed system improvements. Evaluation and recommended design and construction of the sludge lines in Complex B is also included in the scope.

Other Important Info \*Innovation note: Align sizing & design with U of M phosphorus & enhanced carbon capture studies, as well as improved mixing of the ferric with primary influent.

> Challenges: Maintaining capacity of the existing feed system during construction will be a challenge. Also, determining the simplest system that will meet current and future phosphorous limits for both primary and secondary effluent will be a challenge.

Project History: There are phosphorous effluent permit limits for both primary effluent (during wet weather) and for secondary effluent. Effluent limits for phosphorous were lowered again in 2016 and now stand at 1.5 mg/l for primary effluent and 0.7 mg/l (October – March) and 0.6 mg/l (April – September) for secondary effluent. GLWA has historically been able to meet the phosphorous limits for both primary and secondary effluent by adding ferric chloride to the primary clarifier influent. The physical/chemical removal in the primary clarifiers lowered the phosphorous concentrations to meet the primary effluent

VIII-133

Project Title WRRF Rehabilitation of Ferric Chloride Feed System in PS-1 and Complex B Sludge Lines

limits. However, GLWA has begun to experience some difficulty with the settling of the secondary biomass in the final clarifiers. Preliminary investigations have indicated that this settling ability issue could be caused by low phosphorous concentrations in the secondary influent wastewater. This is because the biomass in the secondary system requires a certain ratio of carbon (CBOD), nitrogen, and phosphorous to reduce the pollutant concentrations and then settle in the final clarifiers. As such, in addition to rehabilitating the ferric chloride system at PS-1, there also needs to be a study and possibly pilot test conducted to review the best location for ferric chloride addition to the wastewater.

| CIP Alias | FY16 | FY17 | FY18 | FY19  | FY20  | FY21  | FY22  | FY23  | FY24  | FY25 | FY26 | Total  | 5-Yr Total |
|-----------|------|------|------|-------|-------|-------|-------|-------|-------|------|------|--------|------------|
| 2021      | 0    | 0    | 0    | 178   | 1,239 | 5,522 | 3,886 | 0     | 0     | 0    | 0    | 10,825 | 9,408      |
| 2020      | 0    | 0    | 12   | 1,021 | 2,950 | 4,983 | 1,600 | 0     | 0     | 0    | 0    | 10,566 | 9,533      |
| 2019      | 0    |      |      | 7     | 115   | 1,259 | 2,732 | 5,537 | 2,363 | 0    | 0    | 12,013 | 9,650      |
| 2018      |      |      | 400  | 1,400 | 5,200 | 2,000 | 633   |       | 0     | 0    | 0    | 9,633  | 9,633      |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

Proiect Title WRRF Rehabilitation of the Circular Primary Clarifier Scum Removal System

**Project Status** Future Planned

Wastewater Class Lvl 1

**WRRF** Class Lvl 2

**Primary Treatment** Class Lvl 3

City of Detroit Location

Project Engineer/Manager TBD

✓ Innovation

Conc. WW Master Plan

☐ Water MP Right Sizing

✓ Reliability/Redundancy

☐ NEWTP Repurposing

 $^{oxed}$  Project New To CIP

61.2







The existing scum system is complicated to operate and difficult to maintain, equipment remains out of service for extended period. The scum beaches need better enclosure and heating system, during extreme cold conditions scum collection system get frozen

**Director** Dan Alford

# **Project Score**

Problem Statement The circular clarifiers scum removal system is over 10 years old and need to be rehabilitated. They will help protect the secondary treatment process by preventing scum from entering the aeration tanks.

Scope of Work / Project This project will provide for the study, design and construction of new scum equipment in the Scum Alternatives Buildings for the circular clarifiers. The study will consist of an evaluation of the existing process and simplified alternative systems for scum removal including the scum removal from the buildings. Future alternatives for scum disposal, such as addition to an anaerobic digestion process, will be considered. All alternatives will be evaluated for energy efficiency (reduction of electrical usage). The scum removal system at the rectangular PCs will also be evaluated to determine which aspects can be applied to the circular SBs. Design and construction services will be included for the selected scum removal system.

Other Important Info \*Innovation note: See project write-up -- evaluate alternatives for energy efficiency.

Project History: There are 12 rectangular PCs (1-12) and 6 circular PCs (13-18) clarifiers at the WRRF. PCs remove TSS, BOD, and phosphorous through a chemically enhanced settling process. The clarifiers also remove fats, oils, and grease (FOG or scum) by skimming the surface of the clarifiers and transporting the scum to a SB where it can be concentrated and pumped again to be hauled off site. The SBs for the rectangular clarifiers were recently rehabilitated. They have a fairly simple system and appear to be operating well. The SBs for the circular clarifiers utilize a somewhat complex transport and concentration system. New SBs were installed for PCs 17 and 18 when they were constructed. Since their installation, the

VIII-135

Project Title WRRF Rehabilitation of the Circular Primary Clarifier Scum Removal System

equipment in the circular clarifier SBs has been complicated to operate and difficult to maintain. Much of the equipment is out of service for extended periods of time.

Challenges: Each of the scum removal facility serves two circular clarifiers, so two circular clarifiers at a given time needs to be out of services during rehabilitation, this will limit the primary capacity to minimum to meet NPDES permit requirements.

| CIP Alias | FY16 | FY17 | FY18 | FY19 | FY20  | FY21  | FY22  | FY23  | FY24  | FY25  | FY26 | Total  | 5-Yr Total |
|-----------|------|------|------|------|-------|-------|-------|-------|-------|-------|------|--------|------------|
| 2021      | 0    | 0    | 0    | 0    | 21    | 313   | 1,254 | 802   | 8,715 | 2,144 | 0    | 13,249 | 13,228     |
| 2020      | 0    | 0    |      | 0    | 0     | 778   | 619   | 5,237 | 4,725 | 35    | 0    | 11,394 | 11,359     |
| 2019      | 0    |      |      |      | 7     | 859   | 572   | 5,796 | 5,005 | 0     | 0    | 12,239 | 7,234      |
| 2018      |      |      | 266  | 324  | 1,870 | 2,671 | 2,670 | 2,679 | 0     | 0     | 0    | 10,480 | 7,801      |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

Project Title Rehabilitation of Sludge Processing Complexes A and B

**Project Status** Future Planned ☐ Innovation Wastewater Conc. WW Master Plan Class Lvl 1 **WRRF** ☐ Water MP Right Sizing Class Lvl 2 **Primary Treatment** ✓ Reliability/Redundancy Class Lvl 3 ☐ NEWTP Repurposing City of Detroit Location ✓ Project New To CIP 65 Project Engineer/Manager Ravi Yelamanchi **Director** Dan Alford **Project Score** Problem Statement Both Complex A and Complex B have reached the end of there design life. The majority of the equipment for the two processes are located below grade in areas prone to flooding. Tanks are located above grade and have little to no access around the perimeter, this limits and reduces cleaning effectiveness. Both the valves and the pumps used to transfer sludge to the BDF are past there design life. Equipment brakeage affects the plant ability to process sludge. Scope of Work / Project The work consists of evaluation, design and rehabilitation of both Complex A and Complex B. Scope to Alternatives include tank repair to improving tank access and increase life, building and process repair to including structural, mechanical, process, electrical, and instrumentation replacement. Scope should focused on relocating the sludge pumps from below grade to above grade which could include new above grade structures and cross connecting pumps to allow for additional flexibility in feeding the BDF process. Other Important Info Maintaining the MDEQ-NPDES required capacity during the construction phase of the project.

|           |      |      |      |      |      |      | -    |      |      |      |        |        |            |
|-----------|------|------|------|------|------|------|------|------|------|------|--------|--------|------------|
| CIP Alias | FY16 | FY17 | FY18 | FY19 | FY20 | FY21 | FY22 | FY23 | FY24 | FY25 | FY26   | Total  | 5-Yr Total |
| 2021      | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 178  | 748  | 13,113 | 14,039 | 926        |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

Project Title WRRF PS1 Screening and Grit Improvements

| Project Status | Future Plann   | ed                                                                                                                                                | ✓ Innovation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Class LvI 1    | Wastewater     |                                                                                                                                                   | ☐ Conc. WW Master Plan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Class Lvl 2    | WRRF           |                                                                                                                                                   | □ Water MP Right Sizing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Class LvI 3    | Primary Trea   | tment                                                                                                                                             | ✓ Reliability/Redundancy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Location       | City of Detro  | pit                                                                                                                                               | □ NEWTP Repurposing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                |                |                                                                                                                                                   | ✓ Project New To CIP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Project Engine | eer/Manager    | TBD                                                                                                                                               | 64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                | Director       | Dan Alford                                                                                                                                        | Project Score                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                |                | screenings washing and co<br>collection system with more<br>washing and classification<br>screenings and grit remove                              | 4 inch) for more reliable and efficient screenings removal. Addition of ompaction to reduce truck traffic and cost of disposal. Improvement of grit e efficient, state-of-the-art, grit collection and pumping system, and grit to reduce truck traffic and cost of disposal. Improvements to the grit all and handling systems will improve the performance of all downstream nance costs and increase life of downstream equipment.                                                                                                   |
| Scope of W     | •              | downstream of the bar rac<br>grit removal within the aero<br>upgrade and expansion as<br>and grit handling and load<br>New instrumentation and co | ation, design and construction of the addition of new fine screens (1/4 inch) cks, addition of screenings washing and compaction, inclusion of stacked tray ated grit tank and grit washing and/or classification. Work also includes the senecessary of the existing building that houses the screens and the screenings dout, including all lighting, HVAC, plumbing, electrical, and architectural work. Controls for operations and monitoring will also be provided. System shall be made we weather capacity requirements at PS1. |
| Other I        | Important Info | Maintaining the MDEQ-NPE<br>Coordination with the CIP I                                                                                           | DES required capacity during the construction phase of the project.  Number 211006                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

| •         | •    | •    |      |      | •    | _    |      |      |      |      |         |         |            |
|-----------|------|------|------|------|------|------|------|------|------|------|---------|---------|------------|
| CIP Alias | FY16 | FY17 | FY18 | FY19 | FY20 | FY21 | FY22 | FY23 | FY24 | FY25 | FY26    | Total   | 5-Yr Total |
| 2021      | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 14   | 100,733 | 100,747 | 14         |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

Project Title **WRRF Aeration System Improvements** 

**Project Status** Active

Wastewater Class Lvl 1

**WRRF** Class Lvl 2

Secondary Treatment & Disinfection Class Lvl 3

Location City of Detroit □ Innovation

Conc. WW Master Plan

☐ Water MP Right Sizing

✓ Reliability/Redundancy

☐ NEWTP Repurposing

**Project New To CIP** 



Equipment for aeration system

Project Engineer/Manager Vinod Sharma

**Director** Philip Kora

**Project Score** 

**Problem Statement** Improve aeration system and provide necessary inter-connections

Scope of Work / Project The scope of work includes study, design, and construction assistance for the oxygen baffle on Bay 10 of Alternatives A1 & A2 decks, replacement of influent, Return Activated Sludge (RAS) piping, isolation gate and valves for decks Nos. 3 & 4, replace RAS and influent magmeters for Intermediate Lift Pumps (ILP) Nos. 3, 4 & 7. The work also includes replacement of influent gates and operators on Aeration Deck No. 1 & 2.

Other Important Info Challenges: N/A - Under Procurement

| CIP Alias | FY16 | FY17  | FY18   | FY19   | FY20  | FY21 | FY22 | FY23 | FY24 | FY25 | FY26 | Total  | 5-Yr Total |  |
|-----------|------|-------|--------|--------|-------|------|------|------|------|------|------|--------|------------|--|
| 2021      | 0    | 0     | 0      | 16,356 | 136   | 0    | 0    | 0    | 0    | 0    | 0    | 16,492 | 0          |  |
| 2020      | 0    | 0     | 11,851 | 4,831  | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 16,682 | 0          |  |
| 2019      | 0    | 3,805 | 9,273  | 2,719  | 2,523 |      |      |      |      | 0    | 0    | 18,320 | 5,242      |  |
| 2018      |      | 2,348 | 11,197 | 2,658  |       |      |      |      | 0    | 0    | 0    | 16,203 | 13,855     |  |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

Proiect Title WRRF Chlorination and Dechlorination Process Equipment Improvements

**Project Status** Active

Wastewater Class Lvl 1

WRRF Class Lvl 2

Secondary Treatment & Disinfection Class Lvl 3

City of Detroit Location

✓ Innovation

Conc. WW Master Plan

☐ Water MP Right Sizing

✓ Reliability/Redundancy

☐ NEWTP Repurposing

**Project New To CIP** 



Chlorinator/Sulfonator buildings

Project Engineer/Manager Ali Khraizat

**Director** Dan Alford

# **Project Score**

81.6

Problem Statement The disinfection complex equipment condition has deteriorated because of the corrosive characteristics of the chemicals utilized in the operations of the area. This project is needed to restore equipment performance to OEM levels.

Scope of Work / Project Scope of Work is to refurbish evaporators, chlorinators/sulfonators, replace regulating check valves, Alternatives ejectors, process water valves, gas safety panels, compressors, gas flow meters, and all accessories and appurtenances. This proposed CIP budget is for construction only. The design and construction assistance services are budgeted through "As Needed Engineering Services Contract CS-1481, Task #23".

Other Important Info \*Innovation note: Align with considerations of alternative disinfection.

The maintenance of the equipment hasn't been performed at the recommended intervals. Rebuilding the equipment and maintaining them according to OEM specifications would provide reliable performance.

Challenges: Chlorine and sulfur dioxide are both extremely hazardous toxic chemicals that can impact staff and the public if an uncontrolled gas release occurs. Maintaining staff safety, regulatory compliance, and meeting production requirements is a challenge.

Project History: The DMT Disinfection Complex was commissioned in 2003 and was expected to operate until 2023 without any major projects. However budget and staffing reductions caused the scheduled maintenance to be reduced so the equipment condition has deteriorated.

| CIP Alias | FY16 | FY17 | FY18 | FY19 | FY20  | FY21  | FY22 | FY23 | FY24 | FY25 | FY26 | Total | 5-Yr Total |
|-----------|------|------|------|------|-------|-------|------|------|------|------|------|-------|------------|
| 2021      | 0    | 0    | 0    | 190  | 3,726 | 1,850 | 0    | 0    | 0    | 0    | 0    | 5,766 | 1,850      |

Project Title WRRF Chlorination and Dechlorination Process Equipment Improvements

| CIP Alias | FY16 | FY17 | FY18 | FY19  | FY20  | FY21  | FY22 | FY23 | FY24 | FY25 | FY26 | Total | 5-Yr Total |
|-----------|------|------|------|-------|-------|-------|------|------|------|------|------|-------|------------|
| 2020      | 0    | 0    | 117  | 913   | 2,345 | 1,670 | 0    | 0    | 0    | 0    | 0    | 5,045 | 4,015      |
| 2019      | 0    | 86   |      | 2,101 | 2,422 | 661   |      |      |      | 0    | 0    | 5,270 | 5,184      |
| 2018      |      |      | 400  | 2,800 | 1,800 |       |      |      | 0    | 0    | 0    | 5,000 | 5,000      |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

**Project Title** WRRF Rouge River Outfall (RRO) Disinfection (Alternative)

**Project Status** Active

Wastewater Class Lvl 1

**WRRF** Class Lvl 2

Secondary Treatment & Disinfection Class Lvl 3

City of Detroit Location

□ Innovation

Conc. WW Master Plan

☐ Water MP Right Sizing

✓ Reliability/Redundancy

☐ NEWTP Repurposing

**Project New To CIP** 



Plan view of RRO location

Project Engineer/Manager Darrel Field

**Director** Philip Kora

**Project Score** 

Problem Statement Provide project oversight and design build services for alternative disinfection services to meet NPDES Permit requirements at existing Rouge River Outfall

Scope of Work / Project The consultant shall provide comprehensive professional services for project oversight and Owner's **Alternatives** representation for the PC-797 RRO Disinfection Progressive Design-Build Contract. The scope of work consists of completing basis of design, design and construction services to develop and implement a solution that will result in 100% disinfection of wet weather flow discharged from WRRF to Detroit River outfall and Rouge River Outfall in order to meet NPDES Permit requirements.

Other Important Info Challenges: N/A - Under Procurement.

Project History: The DR0-2 Outfall was originally designed in 1998 under CS-1150, and construction began in 1999 under PC-709. Some surface construction work and substantial underground work were performed, including construction of the entrance shaft, two access shafts, six diffuser riser shafts in the Detroit River, and about half of the length of the tunnel. On April 23, 2003, uncontrollable high rates of ground water mixed with Hydrogen Sulfide (H2S) inflow flooded the tunnel, and it has remained so since that time.

After the tunnel flooded, GLWA (then DWSD) terminated the PC-709 contract and looked for other alternative to complete the work. After further study of the tunnel construction a different alternative was considered and thus, scope for the Modified Detroit River Outfall No. 2 (MOD DR0-2) under CS-1448 design was established. This contract called for a design to construct a new rock tunnel at a higher elevation with Slurry Shield Tunnel Boring Machine (TBM). The design of the MOD DR0-2 was completed on December 2007 and the construction of the DRO-2 project under PC-771 was started on November 2008. Due to economic hardship during the fiscal year 2008/2009, DWSD requested MDEQ to terminate this contract. After further discussion an agreement reached with GLWA (then DWSD) and MDEQ to allow termination of this Contract and look for feasible and cost effective solutions to meet the wet-

Project Title WRRF Rouge River Outfall (RRO) Disinfection (Alternative)

weather discharge to Rouge River Outfall. Therefore, on April 2009, GLWA (then DWSD) terminated the PC-771, MOD DR0-2 Contract.

The Rouge River Outfall No. 2 (RR0-2) proposal was first developed in 2009. The RR0-2 was to be a ground level conduit extending approximately 2,500 feet to the intersection of the Rouge River and the Rouge Shipping canal. The RR0-2 conduit was to be used during the wet-weather events and primary effluent to the river shall be disinfected by mixing of Chlorine and De-chlorination. The Basis of Design (BOD) for the RR0-2 project was issued on November 6, 2009. GLWA (then DWSD) performed a RR0-2 Segment-1 contract to do the ancillary work such as modification of gates, stop logs and chlorine tank shut off valves at WRRF.

In 2012/2013 the WRRF commissioned a study of the feasibility of alternative disinfection methods for meeting the requirements of the Rouge River Disinfection. The results of this study and a subsequent hydraulic study came to the conclusion that the existing conduits to the Rouge River had sufficient contact time to properly disinfect and dechlorinate the secondary effluent from the WRRF. If a method could be designed to shunt secondary flows to the Rouge

River during wet weather and send primary effluent through the longer DRO, then a substantial savings would result from a new design approach. This approach was further explored and discussed with the MDEQ. The result is a NPDES permit modification allowing for the construction of the proposed Rouge River Outfall Disinfection project, keeping the April 2019 project completion date that had been in the NPDES permit.

| CIP Alias | FY16 | FY17  | FY18   | FY19   | FY20  | FY21 | FY22 | FY23 | FY24 | FY25 | FY26 | Total  | 5-Yr Total |
|-----------|------|-------|--------|--------|-------|------|------|------|------|------|------|--------|------------|
| 2021      | 0    | 0     | 0      | 41,692 | 2,748 | 0    | 0    | 0    | 0    | 0    | 0    | 44,440 | 0          |
| 2020      | 0    | 0     | 26,441 | 17,009 | 4,583 | 0    | 0    | 0    | 0    | 0    | 0    | 48,033 | 4,583      |
| 2019      | 0    | 6,873 | 20,619 | 15,817 | 4,157 |      |      |      |      | 0    | 0    | 47,466 | 19,974     |
| 2018      | 729  | 6,530 | 15,800 | 15,520 | 9,020 |      |      |      | 0    | 0    | 0    | 47,599 | 40,340     |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

Proiect Title **WRRF** Rehabilitation of the Secondary Clarifiers

**Project Status** Future Planned

Wastewater Class Lvl 1

**WRRF** Class Lvl 2

Secondary Treatment & Disinfection Class Lvl 3

City of Detroit Location

☐ Innovation

Conc. WW Master Plan

☐ Water MP Right Sizing

✓ Reliability/Redundancy

☐ NEWTP Repurposing

**Project New To CIP** 





**Secondary Clarifiers** 

Project Engineer/Manager Beena Chackunkal

**Director** Dan Alford

**Project Score** 

53.2

Problem Statement The secondary clarifiers need to be inspected and rehabilitated for certain components such as the rake arms.

Scope of Work / Project This project will provide for inspection, study, design, and construction for refurbishing the secondary Alternatives clarifiers. A key component will be the inspection of the concrete and the rake arms. Once the condition of these components is determined, alternatives will be evaluated and the selected alternative will be designed and constructed. The scope will also include evaluating and designing isolation gates for the individual clarifiers. The B Houses have energy intensive HVAC units. These will be evaluated for potential payback with alternative, energy efficient units.

Other Important Info Challenges: This will be a long term project because only one or two clarifiers can be taken out of service at a time. Also, there may be different levels of rehabilitation for each clarifier depending upon the results of the inspection.

> Project History: There are 25 secondary clarifiers at the GLWA WRRF. They have been rehabilitated in the past for other components such as RAS pumps, troughs and weirs, and center drives. It is time to refurbish some of the other key components.

| CIP Alias | FY16 | FY17 | FY18 | FY19  | FY20  | FY21  | FY22  | FY23   | FY24   | FY25   | FY26   | Total  | 5-Yr Total |
|-----------|------|------|------|-------|-------|-------|-------|--------|--------|--------|--------|--------|------------|
| 2021      | 0    | 0    | 0    | 0     | 0     | 0     | 15    | 427    | 879    | 532    | 28,288 | 30,141 | 1,853      |
| 2020      | 0    | 0    |      | 0     | 0     | 0     | 0     | 71     | 933    | 29,114 | 0      | 30,118 | 1,004      |
| 2019      | 0    |      |      |       | 859   | 1,374 | 3,680 | 9,216  | 19,676 | 0      | 0      | 34,805 | 15,129     |
| 2018      |      |      | 301  | 3,576 | 5,543 | 5,540 | 5,540 | 10,499 | 0      | 0      | 0      | 30,999 | 20,500     |

Project Title WRRF Rehabilitation of the Secondary Clarifiers

\* In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

Proiect Title WRRF Aeration Improvements 1 and 2

**Project Status** Future Planned

Wastewater Class Lvl 1

**WRRF** Class Lvl 2

Secondary Treatment & Disinfection Class Lvl 3

City of Detroit Location

✓ Innovation

Conc. WW Master Plan

☐ Water MP Right Sizing

✓ Reliability/Redundancy

☐ NEWTP Repurposing

**Project New To CIP** 



Intermediate Lift Pump Station N.2

Project Engineer/Manager Beena Chackunkal

**Director** Dan Alford

# **Project Score**

67.8

Problem Statement The ILPs convey primary effluent to the secondary bioreactors (aeration decks). These pumps have reached their useful life and are in need of replacement. The pump selection is integrally connected to improvements in the aeration decks related to the conversion to biological phosphorus removal, implementation of step feed and overall improved hydraulic control in the aeration decks and flow control through the secondary system. Implementation of biological phosphorus removal will reduce oxygen and chemical use resulting in a more sustainable treatment system, and implementation of step feed will improve high flow management through the secondary system increasing the volume of flow that can be treated through the secondary system thus minimizing the volume of flow discharged without secondary system. Hydraulic improvements ease operations and minimize the operator attention on the numerous surface aerators.

Scope of Work / Project The work consists of evaluation, design and construction of the replacement of ILPs 1 & 2, conversion of Alternatives aeration decks 1 & 2 to incoprorate biological phosphorus removal, including replacement of mixers in Bays 1, 2 and 3, relocation of the oxygen feed, and a new purge blower. Incorporation of step feed includes modification of the influent conditions to allow primary effluent to be directed to Bay 1, as well as two other locations down the length of the tank. Weir length will be increased to reduce the variation in the hydraulic grade line across the tank to maintain adequate submergence of mixer/aerators and reduce the frequency of mixer/aerators tripping out on surge. Replacement of Mixer/aerators in Decks 4 through 10 will be evaluated and could be included as an add-alternate to the contract.

Other Important Info Opportunity for a common header system to allow for any ILP to supply any bioreactor. If feasible provide ILPs that can meet the regulatory and dry weather needs without the need for speed control.

> Challenges: Maintaining the required wet weather secondary capacity of 930 MGD while operating efficiently during dry weather flows.

Project Title WRRF Aeration Improvements 1 and 2

Project History: ILP Station No. 1 houses ILP Nos. 1 and 2. The pumps are vertical turbine type each with a maximum capacity of 365 MGD and a motor size of 2,500 hp. The pumps are equipped with variable frequency drives (VFDs) to vary the pump speed. ILP Nos. 1 and 2 can feed Aeration Deck Nos. 1 and 2.

ILP Station No. 2 houses ILP Nos. 3, 4, and 7. The pumps are vertical turbine pumps with a maximum rated design capacity of 350 MGD each and a motor size of 2,500 hp. The pumps are also equipped with VFDs. ILP Nos. 3 and 4 feed Aeration Deck Nos. 3 and 4, while ILP No. 7 is a swing pump and can be used to transfer wastewater to Aeration Deck Nos. 2, 3, or 4.

| CIP Alias | FY16 | FY17 | FY18 | FY19 | FY20 | FY21  | FY22  | FY23  | FY24   | FY25   | FY26  | Total  | 5-Yr Total |
|-----------|------|------|------|------|------|-------|-------|-------|--------|--------|-------|--------|------------|
| 2021      | 0    | 0    | 0    | 0    | 183  | 4,612 | 7,977 | 7,619 | 40,638 | 15,336 | 5,149 | 81,514 | 76,182     |
| 2020      | 0    | 0    |      |      | 229  | 500   | 656   | 6,727 | 5,910  | 6,811  | 0     | 20,833 | 14,022     |
| 2019      | 0    |      |      |      | 230  | 1,141 | 6,569 | 5,767 | 6,809  | 0      | 0     | 20,516 | 13,707     |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

Proiect Title WRRF Aeration Improvements 3 and 4

**Project Status** Future Planned

Wastewater Class Lvl 1

**WRRF** Class Lvl 2

Secondary Treatment & Disinfection Class Lvl 3

City of Detroit Location

✓ Innovation Conc. WW Master Plan

☐ Water MP Right Sizing

✓ Reliability/Redundancy

NEWTP Repurposing

✓ Project New To CIP

Project Engineer/Manager TBD

67.8

**Director** Dan Alford

**Project Score** 

**Problem Statement** The ILPs convey primary effluent to the secondary bioreactors (aeration decks). These pumps have reached their useful life and are in need of replacement. The pump selection is integrally connected to improvements in the aeration decks related to the conversion to biological phosphorus removal, implementation of step feed and overall improved hydraulic control in the aeration decks and flow control through the secondary system. Implementation of biological phosphorus removal will reduce oxygen and chemical use resulting in a more sustainable treatment system, and implementation of step feed will improve high flow management through the secondary system increasing the volume of flow that can be treated through the secondary system thus minimizing the volume of flow discharged without secondary system. Hydraulic improvements will ease operations and minimize the operator attention on the numerous surface gerators.

Scope of Work / Project The work consists of evaluation, design and construction of the replacement of ILPs 3, 4 & 7, conversion Alternatives of aeration decks 3 & 4 to incoprorate biological phosphorus removal, including replacement of mixers in Bays 1 and 2, relocation of the oxygen feed, and a new purge blower. Incorporation of step feed includes modification of the influent conditions to allow primary effluent to be directed to Bay 1, as well as two other locations down the length of the tank. An assessment of reconfiguring decks 3 and 4 to four independent decks will also be assessed. Weir length will be increased to reduce the variation in the hydraulic grade line across the tank to maintain adequate submergence of mixer/aerators and reduce the frequency of mixer/aerators tripping out on surge. Replacement of Mixer/aerators in Decks 3 through 8 will be evaluated and could be included as an add-alternate to the contract or included as a separate contract.

Other Important Info Maintaining the MDEQ-NPDES required capacity during the construction phase of the project.

Project Title WRRF Aeration Improvements 3 and 4

| CIP Alias | FY16 | FY17 | FY18 | FY19 | FY20 | FY21 | FY22 | FY23 | FY24 | FY25 | FY26   | Total  | 5-Yr Total |
|-----------|------|------|------|------|------|------|------|------|------|------|--------|--------|------------|
| 2021      | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 14   | 73,749 | 73,763 | 14         |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

Project Title WRRF Conversion of Disinfection of all Flow to Sodium Hypochlorite and Sodium Bisulfite

**Project Status** Future Planned Innovation Wastewater Conc. WW Master Plan Class Lvl 1 **WRRF** ☐ Water MP Right Sizing Class Lvl 2 Secondary Treatment & Disinfection ☐ Reliability/Redundancy Class Lvl 3 ☐ NEWTP Repurposing City of Detroit Location ✓ Project New To CIP 65 Project Engineer/Manager TBD **Director** Dan Alford **Project Score** Problem Statement With the completion of the RRO Disinfection Project (CIP 212006), storage and feed of sodium hypochlorite to the primary effluent bypass with sodium bisulfite for dechlorination has been enabled. Elimination of the use of gaseous chlorine for disinfection of the secondary effluent and replacement with sodium hypochlorite will increase operator and public safety in and around the plant site. Scope of Work / Project The work consists of evaluation of sodium hypochlorite and sodium bisulfite usage over the first three Alternatives years of operation of the new system to assess actual dosage required to achieve permit compliance and storage available with the existing system. The assessment will include preliminary design of modifications required to enable sodium hypochlorite feed to the secondary treatment effluent and an assessment of the storage requirements at varying sodium hypochlorite concentrations. The assessment will also include the appetite for a chemical manufacturer to own and operate a sodium hypochlorite generation facility in close proximity to the facility that would allow piping of sodium hypochlorite to the site (in lieu of providing additional storage, if required, on-site).

| CIP Alias | FY16 | FY17 | FY18 | FY19 | FY20 | FY21 | FY22 | FY23 | FY24 | FY25 | FY26  | Total | 5-Yr Total |  |
|-----------|------|------|------|------|------|------|------|------|------|------|-------|-------|------------|--|
| 2021      | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 14   | 5,972 | 5,986 | 14         |  |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

Proiect Title WRRF Rehabilitation of Central Offload Facility

**Project Status** Cancelled

Wastewater Class Lvl 1

**WRRF** Class Lvl 2

Residuals Management Class Lvl 3

Location City of Detroit ☐ Innovation

Conc. WW Master Plan

☐ Water MP Right Sizing

✓ Reliability/Redundancy

☐ NEWTP Repurposing

**Project New To CIP** 





**Project Engineer/Manager** Partho Ghosh

76.2

Powdered lime discharges into the COF causing lime to discharge throughout the building making the scrubber system to fail

**Director** Philip Kora

# **Project Score**

**Problem Statement** Refurbishment or replacement of COF equipment including sludge storage bins, conveyors, and lime offload system, scrubber system, HVAC etc., will improve reliability and performance. This improvement will enable WRRF to be in compliance with NPDES permit

Scope of Work / Project The study, design and construction for the rehabilitation of the central offload facility includes bin Alternatives activators, rotary feeder valves, knife gate valves, bottom hoppers, conveyors, and other associated items. The work also includes rehabilitation of HVAC system of the entire facility, lime offloading system, drainage system, elevator, and doors.

Other Important Info Challenges: Maintaining the MDEQ-NPDES required capacity during the construction phase of the project.

> Project History: The Central Offload Facility was built under PC-744 (DWP-1074) as a design build project in 2005. The project completion was delayed due to the lime sludge slide gates on the lime mixers which were continuously leaking whenever sludge head in storage bins was high. This problem was finally resolved after replacing the gates. Due to the nature of lime and sludge and continuous operation of this facility, the equipment started failing causing various operational and maintenance problems. Eventually, the facility needs a major rehabilitation.

Project Expenses Compared to Previous CIP Versions (All figures are in \$1,000's)

| CIP Alias | FY16 | FY17 | FY18 | FY19  | FY20  | FY21  | FY22   | FY23 | FY24 | FY25 | FY26 | Total  | 5-Yr Total |
|-----------|------|------|------|-------|-------|-------|--------|------|------|------|------|--------|------------|
| 2021      | 0    | 0    | 0    | 0     | 0     | 0     | 0      | 0    | 0    | 0    | 0    | 0      | 0          |
| 2020      | 0    | 0    | 982  | 4,204 | 7,696 | 3,297 | 0      | 0    | 0    | 0    | 0    | 16,179 | 10,993     |
|           |      |      |      |       |       |       | VIII 1 | T 1  |      |      |      |        |            |

VIII-151

Project Title WRRF Rehabilitation of Central Offload Facility

| CIP Alias | FY16 | FY17 | FY18  | FY19  | FY20  | FY21  | FY22 | FY23 | FY24 | FY25 | FY26 | Total  | 5-Yr Total |
|-----------|------|------|-------|-------|-------|-------|------|------|------|------|------|--------|------------|
| 2019      | 0    | 202  | 665   | 6,447 | 7,520 | 4,579 |      |      |      | 0    | 0    | 19,413 | 18,546     |
| 2018      |      | 800  | 5,850 | 6,750 | 4,350 |       |      |      | 0    | 0    | 0    | 17,750 | 16,950     |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

Proiect Title WRRF Complex I Incinerators Decommissioning and Reusability

Project Status Cancelled

Wastewater Class Lvl 1

**WRRF** Class Lvl 2

Residuals Management Class Lvl 3

City of Detroit Location

✓ Innovation

Conc. WW Master Plan

☐ Water MP Right Sizing

✓ Reliability/Redundancy

☐ NEWTP Repurposing

**Project New To CIP** 



Complex – I Incinerator Building at the WRRF

Project Engineer/Manager Ravi Yelamanchi

**Director** Dan Alford

**Project Score** 

38.4

**Problem Statement** This project will decommission the C-I Incinerators building and investigate the re-usability.

Scope of Work / Project Provide basis of design report for decommissioning of the Complex-I demolition and relocation drawings Alternatives for existing pass through utilities. Provide recommendation for future reusability plan for Complex I. The demolition cost and construction assistance, and relocation of utilities is not included in this budgeted CIP. The budgeted CIP includes study, design and minimum rehabilitation to install heating to continue utilizing the building other than incinerations. The cost to demolish equipment and rehabilitate the existing building for reuse is very high and further capital investment is deferred until reuse need of this building is well defined.

Other Important Info \*Innovation note: Future uses may include alternative sludge handling; keep aligned with Master Plan and Research & Innovation.

> Project History: Complex I was installed and in operation since the 1940's and has completed its valuable life cycle. The Bio-solids Alternatives Evaluation at the WWTP evaluated several options for long-term dewatering disposal as it relates to overall, and more specifically, the Complex I Incinerator Facility. Most of the options indicated that a long-term phasing out of Complex I especially due to its aged equipment and challenges of meet regularity requirements.

Challenges: Possible challenges with this project will include shutdowns of the secondary water system and abatement of asbestos and lead for this building built 1940's. Some utility service lines may be shared with adjoining Complex II Incinerator and Complex I Dewatering.

# Project Expenses Compared to Previous CIP Versions (All figures are in \$1.000's)

| - ,       |      | •    |      |      |      |      | 1    | , ,  |      |       |      |       |            |
|-----------|------|------|------|------|------|------|------|------|------|-------|------|-------|------------|
| CIP Alias | FY16 | FY17 | FY18 | FY19 | FY20 | FY21 | FY22 | FY23 | FY24 | FY25  | FY26 | Total | 5-Yr Total |
| 2021      | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0     | 0    | 0     | 0          |
| 2020      | 0    | 0    | 43   | 0    | 0    | 0    | 0    | 0    | 0    | 4,409 | 0    | 4,452 | 0          |

VIII-153

Project Title WRRF Complex I Incinerators Decommissioning and Reusability

| CIP Alias | FY16 | FY17 | FY18 | FY19 | FY20 | FY21 | FY22  | FY23  | FY24  | FY25 | FY26 | Total | 5-Yr Total |
|-----------|------|------|------|------|------|------|-------|-------|-------|------|------|-------|------------|
| 2019      | 0    |      |      |      |      | 161  | 1,221 | 2,352 | 1,171 | 0    | 0    | 4,905 | 3,734      |
| 2018      |      |      | 900  | 200  |      |      |       |       | 0     | 0    | 0    | 1,100 | 1,100      |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

Proiect Title WRRF Improvements to Sludge Feed Pumps at Dewatering Facilities

**Project Status** Future Planned □ Innovation Wastewater Conc. WW Master Plan Class Lvl 1 **WRRF** ☐ Water MP Right Sizing Class Lvl 2 ✓ Reliability/Redundancy Residuals Management Class Lvl 3 ☐ NEWTP Repurposing City of Detroit Location **Project New To CIP** 

Sludge Feed Pumps

Project Engineer/Manager Ravi Yelamanchi

**Director** Dan Alford

**Project Score** 

69.2

**Problem Statement** Improved sludge feed pumping system will provide wide range of operating conditions. Variable Frequency drive and Hydraulic drive units for SFP 1 and 2 are located below grade and the area has flooded. A single recycle valve for SFP 3 and 4 puts the plant at a higher risk for system outages.

Scope of Work / Project The scope of work includes study, design, and construction for the replacement of sludge feed pumps Alternatives SFP 1, 2, 3, 4, 5 and 6 and other modifications to the pumping system at the WRRF.

Other Important Info Challenges: Maintaining Plant Operational Capacity during construction.

Project History: Water Resource Recovery Facility (WRRF) has six (6) Sludge Storage Tanks (SST-1, 2, 3, 4, 5 &6), which feed sludge to the dewatering facilities (i.e. belt filter presses complexes and complex II centrifuges.) Typically, sludge from Storage Tanks 1 & 2 supplies the centrifuges on dewatering complex Il upper level; sludge from Storage Tanks 3 & 4 supplies the centrifuges on the lower level of Dewatering Complex II; and sludge from Storage Tanks 5 & 6 supplies the belt filter presses in Dewatering Complex I. However, control valves in the Dewatering Complex II basement allow sludge from any storage tanks to supply any Dewaterina area.

Under Contract PC-792, Storage Tanks SST-3 & 4 along with Sludge Feed Pumps SFP-3 & 4 are to be dedicated to BDF Facility.

| CIP Alias | FY16 | FY17 | FY18 | FY19 | FY20 | FY21 | FY22  | FY23  | FY24  | FY25  | FY26 | Total | 5-Yr Total |
|-----------|------|------|------|------|------|------|-------|-------|-------|-------|------|-------|------------|
| 2021      | 0    | 0    | 0    | 5    | 0    | 174  | 385   | 3,371 | 716   | 0     | 0    | 4,651 | 4,646      |
| 2020      | 0    | 0    | 5    | 0    |      | 0    | 0     | 24    | 1,366 | 2,331 | 0    | 3,726 | 1,390      |
| 2019      | 0    | 4    |      |      | 57   | 275  | 2,391 | 1,130 |       | 0     | 0    | 3,857 | 3,853      |

Project Title WRRF Improvements to Sludge Feed Pumps at Dewatering Facilities

| CIP Alias | FY16 | FY17 | FY18 | FY19 | FY20 | FY21 | FY22 | FY23 | FY24 | FY25 | FY26 | Total | 5-Yr Total |
|-----------|------|------|------|------|------|------|------|------|------|------|------|-------|------------|
| 2018      |      | 33   | 402  | 750  |      |      |      |      | 0    | 0    | 0    | 1,185 | 1,152      |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

Proiect Title WRRF Modification to Incinerator Sludge Feed Systems at Complex -II

**Project Status** Active

Wastewater Class Lvl 1

**WRRF** Class Lvl 2

Residuals Management Class LvI 3

City of Detroit Location

**Project Engineer/Manager** Chris Breinling

☐ Innovation

Conc. WW Master Plan

☐ Water MP Right Sizing

✓ Reliability/Redundancy

☐ NEWTP Repurposing

**Project New To CIP** 



Picture from left to right Sludge Conveyer G Damaged by Fire and Conveyer B in the Complex – II Dewatering Building and Fire Damaged Conveyer H in Complex-II Incinerators Building

**Director** Philip Kora

#### **Project Score**

87.2

**Problem Statement** GLWA have an ongoing study and design of sludge cake conveyance system improvements project after the March 4, 2016 fire incident in Complex –II Incinerators building. The construction of this project will provide a cleaner, fire resistant, reliable and safe sludge feed to the incinerators.

Scope of Work / Project The restoration of sludge conveying capacity, which was lost due to the fire damage and to provide Alternatives improved sludge conveyance from each dewatering facility to the incinerators. Replacement of 19 MCCs and Replacement of the Unit Substation EB-26 in Incineration Complex II.

Other Important Info Challenges: Maintaining the sludge conveyance capacity to meet permit requirements during the construction of these improvements, will be the most significant challenge on this project.

> Project History: The C-II Incineration complex is over 40 years old. Major rehabilitation had been deferred over the years in anticipation of an alternative Biosolids disposal solution to handle all the solids. The Complex-II have many major pieces of equipment that are nearing the end of their useful life and require replacement or major rehabilitation in order to be used as the primary long-term solids disposal method. GLWA approved a PC-774 and PC-791 contract to rehabilitate some of the aging problem of the incineration and to meet the new air permit requirements. GLWA just completed the construction of a Biosolids Dryer Facility (BDF) with a firm capacity of 316 dry tons per day. The BDF facility is currently in operation under an in-term agreement with NEFCO. The current GLWA plan for Biosolids disposal is to utilize BDF to its capacity first, then send the additional load to Complex-II Incinerators and anything beyond that to the land fill. This Biosolids Disposal Plan requires investment in the Complex-II Incinerators to process the sludge loads on a regular basis for the daily and wet weather events to avoid the highest

VIII-157

Project Title WRRF Modification to Incinerator Sludge Feed Systems at Complex -II

cost of land fill.

The sludge from Dewatering Complex II travels through a series of conveyor belts (i.e., conveyors G, H and J) before it reaches Incineration Complex II. The sludge from Dewatering Complex II Lower Level was transported by Conveyor G to Conveyor H. In Incinerator Complex II, Conveyor H branches to Conveyors K and L then continue to various conveyors to feed incinerators. The sludge from Dewatering C-II Upper Level was transported by Conveyor J which branches to Conveyors M and N in Incineration C-II then continue to various Conveyors to feed incinerators. The conveyor belt structures in Incineration C-II are old, have been modified, rebuilt or repaired several times that might have altered the overall integrity of the structures. The existing "Dusseau" hopper oftentimes plugged resulting to sludge spillage. The existing feed system to the incinerator from the hoppers should be redesigned and replaced. New control systems, safeguards, provision of SFE water, run time meter or tie to ovation system and poor lighting system in the complex needs improvement.

Drainage problems had historically existed within the basement of Complex II Incineration and C-II Dewatering having to do with both building drainage, and filtrate drainage. These problems led to excessive demands on operations and maintenance staff, shutdown of process-related equipment, and safety concerns for WWTP personnel. Improvements to the C-II Incinerators building drainage system were completed in 2003 under contract DWP-1028. However, the drainage problems were not completely eliminated and still continue to exist and further Improvements to the C-II Dewatering are in design for improvements. In order to have an effective sludge conveyer's wash system, a key requirement for safe operation of sludge conveyance system, the drainage improvements in the Complex-II Dewatering and Incinerators building are essential.

|           |      |       | <b>u</b> . <b>u u</b> . |       | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |       | · · · · · · · · · · · · · · · · · · · | , ,  |      |      |      |        |            |
|-----------|------|-------|-------------------------|-------|-----------------------------------------|-------|---------------------------------------|------|------|------|------|--------|------------|
| CIP Alias | FY16 | FY17  | FY18                    | FY19  | FY20                                    | FY21  | FY22                                  | FY23 | FY24 | FY25 | FY26 | Total  | 5-Yr Total |
| 2021      | 0    | 0     | 0                       | 9,352 | 8,336                                   | 2,258 | 0                                     | 0    | 0    | 0    | 0    | 19,946 | 2,258      |
| 2020      | 0    | 0     | 871                     | 7,159 | 8,711                                   | 3,308 | 0                                     | 0    | 0    | 0    | 0    | 20,049 | 12,019     |
| 2019      | 0    |       | 567                     | 6,787 | 11,356                                  | 3,477 |                                       |      |      | 0    | 0    | 22,187 | 21,620     |
| 2018      |      | 1,500 | 9,600                   | 7,822 |                                         |       |                                       |      | 0    | 0    | 0    | 18,922 | 17,422     |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

WRRF Rehabilitation of the Ash Handling Systems Proiect Title

**Project Status** Active

Wastewater Class Lvl 1

**WRRF** Class Lvl 2

Residuals Management Class Lvl 3

City of Detroit Location

Project Engineer/Manager Alfredo Lava

✓ Innovation

Conc. WW Master Plan

☐ Water MP Right Sizing

✓ Reliability/Redundancy

□ NEWTP Repurposing

**Project New To CIP** 

57.8





Ash crusher system was last rehabilitated 15 years ago and near the end of its useful life, due to Complex I decommissioning dry ash system needs to be reconfigured and rehabilitated

**Director** Dan Alford

#### **Project Score**

Problem Statement The ash systems convey and store ash for ultimate disposal. The incinerators cannot be used if both the systems are not working.

Scope of Work / Project The scope of work will include study, design, and construction for the rehabilitation of the wet and dry **Alternatives** ash systems. The scope will also include the piping, valves, isolation gates, vacuum pumps, air filters, HVAC, boilers, miscellaneous silo repairs (concrete, access, etc.) site work and drainage, and miscellaneous structural repairs (foot bridge, spalling concrete, etc.) at the dry ash handling system. It will also include the pumps, piping, and sluicing system at the wet ash system.

Other Important Info \*Innovation note: Due to only 10-15 years remaining useful life on Complex I, reconsider recommissioning wet ash. Recom.

> Project History: The C-I and C-II Incinerators have been the primary source for processing Biosolids at the GLWA WRF since the plant was first built. The original ash handling system was a wet ash/sluicing process. The dry ash system was constructed in the 1960s and expanded with the construction of the C-II Incinerators in the 1970s. The wet ash system has not been in use for over five years and there is no backup if the dry ash system goes down. The C-I Incinerators are planned to be decommissioned in the next year or two and there is a potential to link the C-I ash handling system to the C-II system to provide extra storage.

Project Title WRRF Rehabilitation of the Ash Handling Systems

| CIP Alias | FY16 | FY17 | FY18 | FY19  | FY20  | FY21  | FY22  | FY23   | FY24  | FY25 | FY26 | Total  | 5-Yr Total |
|-----------|------|------|------|-------|-------|-------|-------|--------|-------|------|------|--------|------------|
| 2021      | 0    | 0    | 0    | 0     | 166   | 1,338 | 636   | 11,061 | 5,342 | 0    | 0    | 18,543 | 18,377     |
| 2020      | 0    | 0    |      | 0     | 111   | 1,111 | 5,525 | 9,574  | 2,184 | 0    | 0    | 18,505 | 18,505     |
| 2019      | 0    |      |      |       | 687   | 916   | 3,614 | 6,069  | 9,330 | 0    | 0    | 20,616 | 11,286     |
| 2018      |      |      | 530  | 1,045 | 6,225 | 5,725 | 4,791 |        | 0     | 0    | 0    | 18,316 | 18,316     |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

Project Title WRRF Relocation of Industrial Waste Control Division and Analytical Laboratory Operations

**Project Status** Active

Class Lvl 1 Wastewater

Class Lvl 2 WRRF

Class LvI 3 Industrial Waste Control

**Location** City of Detroit

 $\square$  Project New To CIP

Project Engineer/Manager Beena Chackunkal

☐ Innovation

Conc. WW Master Plan

☐ Water MP Right Sizing

✓ Reliability/Redundancy

☐ NEWTP Repurposing

62.2



Old IWC and Analytical Lab; new one will be built at the location of the WRRF because of Gordie Howe International Bridge Project

**Director** Dan Alford

**Project Score** 

**Problem Statement** Laboratory Optimization, Continued operation of IWC and Lab, lease termination for analytical laboratory, and utilization of available space in WRRF NAB

**Scope of Work / Project** Relocate Industrial Waste Control Division and Analytical Lab to New Administration Building at WRRF.

**Alternatives** Consolidate the existing Operations Lab with Analytical Lab.

Other Important Info Challenges: Maintaining the laboratory operations during relocation.

Project History: In accordance with the NPDES Permit, GLWA implements and enforces an Industrial Pretreatment Program (IPP), and regulates the discharge of wastewater from commercial and industrial sources throughout the service area. A key component of the IPP includes the performance of analytical testing on wastewater samples collected from industrial and commercial sources, in-system samples from the sewer system and other sources including groundwater and septage. The Industrial Waste Control Division (IWC) is responsible for implementation of the IPP, and analytical services are obtained from the Analytical Laboratory located at the MCHT facility. IWC activities are housed at the Livernois Center Building (LCB) located at 303 S. Livernois, while the Analytical Laboratory leases space at the MCHT on Second Avenue.

The State of Michigan Department of Transportation and the Govt. of Canada have proposed to construct a new bridge crossing across the Detroit River, with a completion date of 2020. The Livernois Center Building lies within the area designated for the Bridge and support services and need to be relocated. It would be desirable to relocate the laboratory facilities at the same time to optimize the operations and make use of underutilized GLWA facilities rather than lease space from a 3rd party.

Project Title WRRF Relocation of Industrial Waste Control Division and Analytical Laboratory Operations

| CIP Alias | FY16 | FY17 | FY18  | FY19  | FY20   | FY21  | FY22 | FY23 | FY24 | FY25 | FY26 | Total  | 5-Yr Total |
|-----------|------|------|-------|-------|--------|-------|------|------|------|------|------|--------|------------|
| 2021      | 0    | 0    | 0     | 2,301 | 10,369 | 1,331 | 0    | 0    | 0    | 0    | 0    | 14,001 | 1,331      |
| 2020      | 0    | 0    | 573   | 2,828 | 7,567  | 0     | 0    | 0    | 0    | 0    | 0    | 10,968 | 7,567      |
| 2019      | 0    | 182  |       | 4,001 | 7,764  | 1,000 |      |      |      | 0    | 0    | 12,947 | 12,765     |
| 2018      |      |      | 5,000 | 2,000 |        |       |      |      | 0    | 0    | 0    | 7,000  | 7,000      |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

**Project Title** Rehabilitation of Various Sampling Sites and PS#2 Ferric Chloride System at WRRF

**Project Status** Active

Wastewater Class Lvl 1

**WRRF** Class Lvl 2

General Purpose Class LvI 3

City of Detroit Location

Project Engineer/Manager Beena Chackunkal

✓ Innovation

Conc. WW Master Plan

☐ Water MP Right Sizing

✓ Reliability/Redundancy

☐ NEWTP Repurposing

**Project New To CIP** 



The RAS-3 sampling station in the basement of Intermediate Lift Pump No. 2 (ILP No. 2) Building samples the return activated sludge flows to Aeration Deck No.4

**Director** Dan Alford

**Project Score** 

82.2

Problem Statement Rehabilitation of the sampling facilities will improve system reliability and allow for consistent and accurate sampling. This will help to submit an accurate report to MDEQ. The rehabilitation of Ferric Chloride system will improve the phosphorous removal to comply with the Permit.

**Scope of Work / Project** The scope of work includes:

Alternatives Replacement of existing sampling equipment, installing new samplers, pumps, piping, housing and support equipment such as I&C, HVAC, etc. at the various sampling sites.

The scope also include:

Replacement of existing two steel Ferric Chloride tanks at PS#2 with four (4) smaller tanks.

Provide new piping layout, gravity feed, and self-cleaning strainer.

Rehabilitate Ferric Chloride Unloading station, associated Valves and Appurtenances.

Provide Flow meters and new control strategies to meet future demands of Ferric Chloride at Pump

Station # 2.

The CIP is for construction only.

Other Important Info \*Innovation note: Rehab may include alternative online/real-time sampling & analysis, as well as improved mixing of the ferric with primary influent.

> The original CIP Project Proposal CIP-1223, "Rehabilitation of Grit and Screening System at PS-2 and Rehabilitation of Sampling Sites at WWTP" included two major scope items; Rehabilitation of Grit & Bar Screening System and Sampling Stations. That construction budget for CIP-1223 amount \$11 M was set aside in CIP. The design for Grit & Screening System and Sampling Station were complete under As Needed Engineering Services Contract, CS-1481 Task 18. The construction for "Rehabilitation of Sampling Sites" will move forward and be bid out separately for construction without Grit & Bar Screening System.

> > VIII-163

### Project Title Rehabilitation of Various Sampling Sites and PS#2 Ferric Chloride System at WRRF

The Bar Rack System and Grit System designed under As Needed Engineering Services Contact CS-1481, Task 18 will not proceed for construction as designed. An engineering decision to have a fresh look and start a new study, design and construction project through CIP-1314 will proceed. The proposed CIP budget is for construction cost only. The original budget for CIP-1223 was \$11M and has been reduced to \$5M. The remaining \$6M budget has been transferred to CIP-1314 to complete study, design and construction of Grit and Screening System at PS#2.

Challenges: Maintaining the MDEQ-NPDES required capacity during the construction phase of the project.

Project History: The Sampling sites are located at Oakwood, MPI-2, NEIA, PEAS1, 3 & 4, ML1 thru 4, and RAS1 thru 4, C2SE 3& 4. Sampling is performed to monitor permit compliance and process performance. Samples are also collected and analyzed on composite samples. The above sampling stations are required to be rehabilitated or replaced for meeting the permit sampling requirements. These sampling stations regularly fails to collect samples due to the clogging problem in the sample line. Replacement of existing sampling equipment, installing new samplers, pumps, HVAC, etc. were also proposed through Need Assessment 2010 – 2016 for these sampling stations.

The WRRF sampling station rehabilitation design is completed under an As Needed Engineering Services. The WRRF PS# 2 Ferric Chloride rehabilitation design is completed under another As Needed Engineering Services Contact. These two projects are combined together for construction under the revised CIP #1223 in the 2018 CIP.

|           |      |      |       |       |       |       | <b>1</b> | , ,  |      |      |      |       |            |
|-----------|------|------|-------|-------|-------|-------|----------|------|------|------|------|-------|------------|
| CIP Alias | FY16 | FY17 | FY18  | FY19  | FY20  | FY21  | FY22     | FY23 | FY24 | FY25 | FY26 | Total | 5-Yr Total |
| 2021      | 0    | 0    | 0     | 815   | 3,493 | 1,300 | 121      | 0    | 0    | 0    | 0    | 5,729 | 1,421      |
| 2020      | 0    | 0    | 439   | 609   | 3,921 | 607   | 0        | 0    | 0    | 0    | 0    | 5,576 | 4,528      |
| 2019      | 0    | 312  | 40    | 551   | 3,957 | 565   |          |      |      | 0    | 0    | 5,425 | 5,073      |
| 2018      |      |      | 2,500 | 2,500 |       |       |          |      | 0    | 0    | 0    | 5,000 | 5,000      |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

Proiect Title Assessment and Rehabilitation of WRRF yard piping and underground utilities

**Project Status** Active

Wastewater Class Lvl 1

**WRRF** Class Lvl 2

General Purpose Class Lvl 3

City of Detroit Location

✓ Innovation

Conc. WW Master Plan

☐ Water MP Right Sizing

✓ Reliability/Redundancy

☐ NEWTP Repurposing

**Project New To CIP** 



GI WA WRRF

Project Engineer/Manager Charles Reinhart

**Director** Dan Alford

**Project Score** 

76.4

**Problem Statement** Yard piping and underground utilities are vital to the operations of the WRRF. The integrity of these systems will be maintained with this project. The Secondary Water system needs to be relocated or completely refurbished to provide uninterrupted water for fire protection and process applications such as seal water to the pumps. Some of the yard piping is original to the plant and requires a condition assessment.

Scope of Work / Project This project will include the study, design, and construction for the needed improvements to yard piping Alternatives and underground utilities. This includes right sizing, as-built confirmation and condition assessment of our yard piping and underground utilities. It is possible that the secondary water system may need to be relocated. The distribution models for the water systems will also be updated. A redundant potable water feed to the WRRF will also be evaluated.

Other Important Info Reliable utility is a critical aspect of O&M for the facility and to avoid outages.

Project History: Some of the pipe lines at the WRRF have been inexistence since the plant was built and have been found on record dating back to 1938. As the plant has grown, so have the systems. In general, the majority of the changes to the multiple systems occurred when the specific buildings or components to the plant were built or renovated. Therefore, an evaluation and necessary replacement of these pipelines are needed to make sure the integrity of these pipelines.

Challenges: Maintaining the adequate supply of our water systems required for treatment processes during assessment and rehabilitation of underground utilities will be the most significant challenge on this project. Temporary power, air, water, natural gas system shutdowns may also be required to perform the work.

Project Title Assessment and Rehabilitation of WRRF yard piping and underground utilities

| CIP Alias | FY16 | FY17 | FY18  | FY19  | FY20   | FY21   | FY22   | FY23   | FY24   | FY25  | FY26 | Total  | 5-Yr Total |
|-----------|------|------|-------|-------|--------|--------|--------|--------|--------|-------|------|--------|------------|
| 2021      | 0    | 0    | 0     | 3     | 270    | 4,291  | 4,754  | 4,754  | 4,767  | 5,400 | 273  | 24,512 | 23,966     |
| 2020      | 0    | 0    |       | 0     | 323    | 5,258  | 3,849  | 4,500  | 3,500  | 7,423 | 0    | 24,853 | 17,430     |
| 2019      | 0    |      |       |       | 1,718  | 4,008  | 7,174  | 17,530 | 24,026 | 0     | 0    | 54,456 | 30,430     |
| 2018      |      |      | 1,700 | 2,000 | 12,000 | 15,600 | 16,279 | 4,141  | 0      | 0     | 0    | 51,720 | 47,579     |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

Proiect Title DTE Primary Electric 3rd Feed Supply to WRRF

**Project Status** Active

Wastewater Class Lvl 1

**WRRF** Class Lvl 2

General Purpose Class Lvl 3

Location City of Detroit

Project Engineer/Manager Phillip Kora

☐ Innovation

Conc. WW Master Plan

☐ Water MP Right Sizing

✓ Reliability/Redundancy

□ NEWTP Repurposing

**Project New To CIP** 



The new 3rd 120/13.8 kV Transformer installed and owned by the Great Lakes Water Authority waiting for the 3rd Primary Electric Feed Line to be installed and energized

**Director** Philip Kora

## **Project Score**

82.8

**Problem Statement** GLWA's WWTP will have a redundant primary electrical service to power the WRRF equipment.

Scope of Work / Project The scope of this design-build project includes design and construction of 3rd 120 kV primary electric **Alternatives** supply transmission line owned by DTE tapping into the 120-kV Waterman-Zug line in the vicinity of Dearborn St. and Copland St right-of-way at Tower 1368. The design-build services also include securing the property right-of-way easements from the property owners, as well as the design and construction of power transmission supply line. This primary transmission power line will energize the already installed new 120-13.8 industrial substation owned by GLWA near EB-1.

Other Important Info Challenges: Negotiation with private property owners and testing of the automatic switch over will require co-ordination with operations.

> Project History: The WRRF has been supplied primary electrical power through the DTE Maxwell Switching Station via two power supply lines Maxwell 1 and Maxwell 2. The two main electrical buildings at the WRRF which feed the primary and secondary facilities are Electrical Building 1 and 2 (EB-1 and EB2). EB2 supply electrical power to the pump station #1 and all the primary treatment facilities. EB1 supply power to pump station #2, secondary treatment facilities, dewatering, incineration and all other remaining facilities. The City of Detroit's Public Lighting Department (PLD) provided a redundant 24kV back-up electrical services to EB2 through the City of Detroit 24kV industrial substation. In the event of DTE power supply failure the PLD 24kV power supply line provided redundancy and reliability to EB2. The back-up power supply by PLD at EB-2 required a manual switch over in the event of DTE power failure. The City of Detroit's PLD discontinued its power generation in the late 1980's. PLD also started curtailing electrical power supply distribution to its customers. The study by HRC in 1988 and later by Metcalf & Eddy in the

Proiect Title DTE Primary Electric 3rd Feed Supply to WRRF

> early 90's during design and construction of Pump Station # 2 project identified the need for a 3rd primary electrical supply line. In order to provide reliable and redundant primary electric power supply to the WRRF after the September 8, 2011 power failure event, GLWA initiated a consulting services contract "CS-1449 Underground Electrical Duct Bank Repair and EB-1, EB-2 and EB-10 Primary Power Services Improvements at the WWTP". This CS-1449 scope required to study and design reliable and redundant primary electrical power system improvements. The study recommended to abandon PLD's 24kV back-up electric power supply to EB-2 and replace with a 3rd power supply feed line from DTE's Waterman substation. In addition to the 3rd power feed line, the study also recommended a new 120-13.8 kV transformer near EB-1 and a new 15kV power supply line to EB-2, to address power redundancy and reliability. Construction of the primary power services improvements design through CS-1449 were procured through contract PC-783. The contract PC-783 in the 1st quarter of 2016 abandoned and removed the 24kV power feed line and industrial substation owned by PLD. On May 29, 2012, GLWA signed a letter of agreement with DTE to provide a 3rd 120kV feed transmission line owned by DTE (paid by GLWA) to a new 120-13.8 kV industrial substation built and owned by GLWA. The DTE agreed to obtain all required property right-of-way and easements for the route with reasonable effort per the agreement with GLWA. The PC-783 contract allocated \$1.30 Million budget for DTE to execute these services. GLWA, through construction contract PC-783, has already installed a new 120-13.8 industrial substation near EB-1, a new 15kV power supply line from the new transformer to EB-2, and removed 24kV back-up electrical service line and industrial substation owned by PLD. However, DTE failed to get property right-of-way and easements for the route. DTE's original design route for transmission line was along the railroad tracks but the rail company declined to provide right-of-way for DTE's new transmission line. DTE later planned a longer transmission route to buy property from private owners, but a property owner increased the price sensing urgency for GLWA. The new cost estimate by DTE for this new transmission line is \$4.3 Million. GLWA's WRRF requires a reliable and redundant electrical power supply in order to be in compliance with NPDES permit requirements. The disconnection and removal of backup power supply from PLD leaves GLWA vulnerable for power failure and this urgent power supply line needs to be installed at the earliest. In order to speed design and construction GLWA is proposing a design-build project delivery method for the 3rd power supply line project. Presently there is no true redundant primary electrical service feed line to the WRRF, both the primary electric supply lines originate from the DTE Maxwell Switching Station. GLWA's General Counsel is currently working on utilizing the "Condemnation Process" to acquire easement from the private property owners for this route.

### Project Expenses Compared to Previous CIP Versions (All figures are in \$1,000's)

| CIP Alias | FY16 | FY17 | FY18 | FY19  | FY20  | FY21  | FY22   | FY23 | FY24 | FY25 | FY26 | Total | 5-Yr Total |
|-----------|------|------|------|-------|-------|-------|--------|------|------|------|------|-------|------------|
| 2021      | 0    | 0    | 0    | 738   | 3,062 | 1,296 | 727    | 0    | 0    | 0    | 0    | 5,823 | 2,023      |
| 2020      | 0    | 0    | 584  | 2,108 | 1,381 | 3,374 | 0      | 0    | 0    | 0    | 0    | 7,447 | 4,755      |
| 2019      | 0    | 15   |      | 2,002 | 1,326 | 3,326 | VIII 1 |      |      | 0    | 0    | 6,669 | 6,654      |

VIII-168

Project Title DTE Primary Electric 3rd Feed Supply to WRRF

| CIP Alias | FY16 | FY17 | FY18  | FY19  | FY20 | FY21 | FY22 | FY23 | FY24 | FY25 | FY26 | Total | 5-Yr Total |
|-----------|------|------|-------|-------|------|------|------|------|------|------|------|-------|------------|
| 2018      |      |      | 3,500 | 3,500 |      |      |      |      | 0    | 0    | 0    | 7,000 | 7,000      |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

Proiect Title Rehabilitation of Screened Final Effluent (SFE) Pump Station

**Project Status** Future Planned

Wastewater Class Lvl 1

**WRRF** Class Lvl 2

General Purpose Class Lvl 3

City of Detroit Location

✓ Innovation

Conc. WW Master Plan

✓ Water MP Right Sizing

☐ Reliability/Redundancy

☐ NEWTP Repurposing

 $^{oxed}$  Project New To CIP



Project Engineer/Manager TBD

**Director** Dan Alford

**Project Score** 

55.8

**Problem Statement** The SFE Pump Station provides SFE water to many of the GLWA WRRF treatment processes and needs to be completely rehabilitated to maintain uninterrupted supply of SFE water to these processes.

Scope of Work / Project This project will include the study, design, and construction for the needed improvements to the SFE **Alternatives** pump station. This includes required capacity, pumps, strainers, piping, controls, building improvements, and electrical supply. This will also include a study to evaluate the potential for replacing the secondary water utilization with SFE utilization where feasible and an alternative analysis to the existing carrier water at chlorination/dechlorination facility, seal water, recovery needs which may include additional SFE treatment such as chemical addition to accommodate process needs.

Other Important Info \*Innovation note: optimize of a valuable resource recovered for facility needs. Project History: The SFE pump station has eight pumps with a total capacity of approximately 135 MGD. Pumps 1,2,4, and 6 were installed in 1973, pumps 3 and 5 in 1980, and pumps 7 and 8 in 1998. The older pumps were rebuilt in 1998. Strainers have been reconditioned as necessary over time. Due to the critical nature of the SFE pump station and the elapsed time since a major rehabilitation (over 15 years), a significant upgrade/rehabilitation is required. In addition, the two 5 kV transformers that supply power from EB-3 are approximately 40 years old and are in need of replacement.

> Challenges: Maintaining the adequate supply of SFE to the plant treatment processes during construction of the SFE improvements.

## Project Expenses Compared to Previous CIP Versions (All figures are in \$1,000's)

| CIP Alias | FY16 | FY17 | FY18 | FY19 | FY20  | FY21  | FY22  | FY23   | FY24  | FY25 | FY26 | Total  | 5-Yr Total |
|-----------|------|------|------|------|-------|-------|-------|--------|-------|------|------|--------|------------|
| 2021      | 0    | 0    | 0    | 0    | 590   | 1,362 | 1,507 | 15,571 | 5,924 | 0    | 0    | 24,954 | 24,364     |
| 2020      | 0    | 0    |      | 51   | 1,091 | 991   | 9,475 | 7,805  | 5,535 |      | 0    | 24,948 | 24,897     |

VIII-170

Project Title Rehabilitation of Screened Final Effluent (SFE) Pump Station

\* In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

Location

Proiect Title LM Facilities Assessment and Rehabilitation/Replacement

**Project Status** Active ☐ Innovation Wastewater Conc. WW Master Plan Class Lvl 1 **WRRF** ☐ Water MP Right Sizing Class Lvl 2 General Purpose ☐ Reliability/Redundancy Class Lvl 3

☐ NEWTP Repurposing City of Detroit

✓ Project New To CIP

Project Engineer/Manager Beena Chackunkal

71.6

**Director** Dan Alford

**Project Score** 

**Problem Statement** The warehouse buildings that stores equipment and supplies for GLWA are located at different facilities.

The physical condition of the existing buildings, specifically the McKinstry warehouse (SSS), seems to be in poor condition with extensive roof leaking and other issues. There is an assessment of the L&M Facilities going on to determine whether it makes economic sense to continue to operate these facilities at the

existing sites or if these facilities can be downsized into one central site.

Scope of Work / Project Evaluate the existing conditions of the warehouse facilities throughout GLWA. Provide recommendations Alternatives to improve the facility environment to store the assets safely and efficiently. The various building systems, including heating, ventilation, electrical, and lighting shall be evaluated to be in compliance with

applicable building codes and regulations.

Design and Construction of the suggested modifications, based on the evaluation, shall follow.

|           |      | •    |      |      | •    |      | •     |      |      |      |      |       |            |  |
|-----------|------|------|------|------|------|------|-------|------|------|------|------|-------|------------|--|
| CIP Alias | FY16 | FY17 | FY18 | FY19 | FY20 | FY21 | FY22  | FY23 | FY24 | FY25 | FY26 | Total | 5-Yr Total |  |
| 2021      | 0    | 0    | 0    | 0    | 227  | 253  | 1,318 | 970  | 0    | 0    | 0    | 2,768 | 2,541      |  |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

Class Lvl 3

Location

**Project Title WRRF Facility Optimization** 

General Purpose

City of Detroit

**Project Status** Future Planned □ Innovation Wastewater Conc. WW Master Plan Class Lvl 1 **WRRF** ☐ Water MP Right Sizing Class Lvl 2

☐ Reliability/Redundancy

☐ NEWTP Repurposing

✓ Project New To CIP

63.6 Project Engineer/Manager TBD

> **Director** Dan Alford **Project Score**

**Problem Statement** The existing WRRF is a product of countless construction projects over nearly 90 years and consists of numerous process and non-process buildings with varying levels of use and practicality. As WRRF across the nation come out of the shadows and into the light of the public and elected officials it is critical to convey an image that reflects the pride and importance of the work that is done every day at this facility. As such, this project will work on the softer side of the facility, create a visitor center focusing on public education to entice the next generation of wastewater engineers, scientists and operators, and to beautify the image of the facility creating a more welcoming environment for the public and staff alike.

Scope of Work / Project The work consists of extending the evaluation performed as a part of Master Planning to design and Alternatives construct site modifications including but not limited to a new visitor center, demolition or repurposing of existing structures that are no longer used, consolidation and or reconfiguration of administration, operations and maintenence staff and spaces, vehicle and equipment storage spaces, shops, etc. The project also includes site modifications to include improved site circulation, parking and fencing, green infrastructure, improved landscaping, wallking paths around the site and site features, including but not limited to educational signage and benches.

| CIP Alias | FY16 | FY17 | FY18 | FY19 | FY20 | FY21 | FY22 | FY23 | FY24  | FY25 | FY26 | Total  | 5-Yr Total |
|-----------|------|------|------|------|------|------|------|------|-------|------|------|--------|------------|
| 2021      | 0    | 0    | 0    | 0    | 0    | 14   | 657  | 987  | 7,999 | 681  | 0    | 10,338 | 10,338     |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

Proiect Title Oakwood District Intercommunity Relief Sewer Modification at Oakwood District

**Project Status** Future Planned

Wastewater Class Lvl 1

Field Services Class Lvl 2

Interceptor Class LvI 3

Multiple Counties Location

Project Engineer/Manager Mini Panicker

□ Innovation

Conc. WW Master Plan

☐ Water MP Right Sizing

✓ Reliability/Redundancy

☐ NEWTP Repurposing

**Project New To CIP** 



Aerial photo, far left, of Oakwood Sewer District depicting previously designed relief sewers tributary to Oakwood Pump Station and CSO Retention Treatment Basin. Part of the planned relief sewers and associated hydraulic

structures were constructed between

**Director** Biren Saparia

### **Project Score**

53.6

**Problem Statement** Improvements to the Oakwood District Sanitary Sewer system and implementation of various projects as recommended in report by Applied Sciences, Inc. Dated 2/26/16. Projects to include: 1) Clean & Inspect Trunk Sewers, 2) Analysis and improvement of Oakwood PS/RTB operations, 3) Second influent sewer to Oakwood PS, and 4) NWI Diversion for CSO Control. Projects to be prioritized and validated as part of Wastewater Master Plan Project (GLWA CS-036).

Scope of Work / Project The work includes basis of design (study) report on alternative solution to proposed Oakwood District Alternatives Intercommunity Relief Sewer, diversion of storm water flow, and construction assistance during construction phase of emerging projects. Coordinate with DWSD projects including catch basin restrictions and green spaces.

Other Important Info Refer to linked aerial photo of Oakwood District with overlay of proposed new sewers, as built drawings of recent construction in the District for PCS-79, PCS-80 and PC-755; map of Intercommunity Collection System including portion of Oakwood District shown above—and other select resources linked below.

> Challenges: Maintaining the wet weather contract capacities and adequate CSO treatment during extreme storm events and mitigate basement and street flooding in the District and intercommunity regional districts are the most significant challenges for the project to address. Other Important Info: The Oakwood District is located in the southwest portion of the City of Detroit covering an area of 1,520 acres. In general, it's bound within by a continuous stretch of the northerly and westerly bank of the Rouge River, thence stretches of the city limits of River Rouge and Ecorse to the south, thence a stretch

VIII-174

Project Title Oakwood District Intercommunity Relief Sewer Modification at Oakwood District

of the city limits of Lincoln Park to the far lower west (abutting a stretch of Outer Drive near the adjacent watercourse of Ecorse Creek further west), thence a stretch of the city limits of Melvindale to the north near I-75 (between Outer Drive and Schaefer Hwy), thence a continued stretch of city limits of Melvindale to the upper west abutting Schaefer Hwy (between I-75 and the point of beginning along southerly embankment of the Rouge River adjacent Mellon Ave.

Much of the District was originally platted as Oakwood Village, later annexed to the City of Detroit. Some areas of the District are situated in relatively low-lying, flood prone topographies. Much of the combined sewer drainage system was originally designed and built since the 1930's with laterals and larger trunk and intercepting sewers tributary to the former (and present replacement) Oakwood Pumping Station situated near the intersection of Sanders and Liddesdale Street. In early years, combined sanitary and intercepted storm runoff flow drained to that pump station was coarsely screened, pumped (lifted) and, in turn, conveyed though two discharge conduits tributary to a segment of O'Brien Drain--a natural and man-made (modified) stream confluent to the Rouge River--without further treatment.

Whereas much of the remaining area of the District, predominantly that north of Fort Street and east of Schaefer highway (a/k/a Oakwood Heights), is situated on relatively higher terrain. Originally, good portions of this area4 connected to public sewers drained to other streams or outfalls tributary to the Rouge and otherwise drained to the original municipal wastewater treatment plant in Detroit via other lateral, trunk and intercepting sewers tributary to an original 24" siphon connection constructed beneath the Rouge River just south of the Fort Street bridge to the city's 12'-9" Oakwood Interceptor also constructed in the 1930's extending from the WWTP, largely paralleling the Rouge River to a point ending just north of Fort Street beneath Miller Road.

In the 1940's, a 3'-0" sewer was constructed from the original pump station's discharge channel which proceeded northerly beneath Sanders St and thence easterly beneath Fort St to a drop shaft hydraulic structure at below intersection at Bayside St in turn connected with a 24" siphoned sewer running easterly beneath the Rouge River and connecting with a downstream hydraulic connection to the City's 12'-9" Oakwood Interceptor (later renamed Oakwood Northwest Interceptor, or ONWI) tributary to the WWTP (originally built in the 30's and placed into operation in early 40's) to primarily convey pumped sanitary (dry weather) flow from the southerly portion of the District to the treatment plant. Continued sewer modifications in the District promoted the interception and routing of combined flows in other areas underserved to the pump station via larger intercepting sewers constructed along Pleasant, Sanders and elsewhere connecting with the main Liddesdale Interceptor—the primary influent sewer to pump station.

In the 1950's, to meet increased service needs in the far western sewer districts of the City of Detroit and neighboring communities of Wayne County and otherwise mitigate increased public health risks, the county (with endorsements from a coalition of these municipalities) commissioned construction of the 10'-0" cylinder Northwest Interceptor (NWI). The NWI was constructed in segments, phased over 10 years. Its alignment generally extends 15 miles northwest from its terminus near Fort and Bayside within the Oakwood District --largely following the original watercourse of main trunk of the Rouge thence northerly

Project Title Oakwood District Intercommunity Relief Sewer Modification at Oakwood District

beneath the Southfield Freeway (M-39) to a connection with the tributary 7'-6" cylindrical Ford Road intercepting sewer—which transports upstream drainage from Detroit's Rouge River District as well as drainage from several hydraulically-connected suburban communities. The NWI's transport capacity, although initially sized to convey wet weather flows resulting up to the typical 10-year uniform rainstorm simulated across the collection system, contributes to ¼ or more of all annual tributary influent flows to the WRRF, on average—depending on prevailing transport capacities along its extensive run as well as limited transport capacities within the downstream ONWI.

It should be recognized that the sole hydraulic-connection from the Oakwood Sewer District for drainage to the NWI is via a drop manhole connection of the aforementioned 36" sanitary discharge main leading from the new (replacement) Oakwood pump station and integral CSO retention treatment basin built in 2011 (PC-755). This connection, which is located beneath Fort St just upstream of the above-mentioned 1950's hydraulic drop shaft structure located at Fort at Bayside with a connected 6'-3" siphon to the ONWI. For more information on Oakwood District refer to Section 2.4 of the linked Description of Sewer Service Districts from the 2003 Wastewater Master Plan, some subject to revisions, since the Oakwood Pump Station and CSO Control Facility was constructed in 2011. Also for further reference, refer to linked Oakwood District Sewer Maps.

Prior Drainage Plans; Continued Interim Plans As part of overall renovation, larger, deeper intercepting sewers and relief sewers were proposed to Oakwood District to alleviate the surcharging and flooding of basement. Contact PCS-79 (2011) implemented sewer modifications designed in the Oakwood Heights area as well as Junction Chamber No. 1 at the headworks (influent channels) to the new Oakwood pump station/CSO RTB just east of Pleasant Ave; PCS-80 (2012) implemented select designed relief and replacement sewers in tributary area to the existing 9'-0"- Liddesdale intercepting sewer. In addition, the proposed system also consisted of a replacement of the existing sewer systems through the district area. The existing sewer system generally consists of sewer line located behind homes, which is connecting sanitary flows from homes and storm flows from the catch basins located in the street.

Previously, GLWA authorized a new task to Applied Science, Inc. (ASI) under CS-1482 to perform the baseline hydraulic and hydrologic analysis for the impacted areas of the Oakwood District based on the recent condition of the site, such as conversion of the green space by the Marathon Oil Company, current hydrologic factors given the current land use, and assessment of other land and abandoned properties.

Moreover, extended efforts have been undertaken by ASI, as engineering representative of Wayne County, and GLWA to address wet weather capacity needs for the intercommunity districts tributary to GLWA's NWI and the county's Rouge Valley Interceptor (1965) illustrated on above map)--which are hydraulically-connected with a passive structure (B-097) built in the 1960's at their crossing (i.e., double 6'-6" siphons of the RVI beneath the NWI's alignment) in proximity of Pleasant Ave and Oakwood Ave intersection.

Project Title Oakwood District Intercommunity Relief Sewer Modification at Oakwood District

| CIP Alias | FY16 | FY17 | FY18 | FY19 | FY20  | FY21  | FY22  | FY23   | FY24   | FY25   | FY26   | Total  | 5-Yr Total |
|-----------|------|------|------|------|-------|-------|-------|--------|--------|--------|--------|--------|------------|
| 2021      | 0    | 0    | 0    | 0    | 0     | 975   | 3,128 | 3,371  | 11,234 | 13,439 | 21,365 | 53,512 | 32,147     |
| 2020      | 0    | 0    |      | 0    | 0     | 0     | 3,800 | 10,077 | 10,077 | 14,077 | 0      | 38,031 | 23,954     |
| 2019      | 0    |      |      |      | 10    | 1,372 | 5,961 | 10,292 | 20,365 | 0      | 0      | 38,000 | 17,635     |
| 2018      |      |      |      | 550  | 2,750 | 5,500 | 2,200 |        | 0      | 0      | 0      | 11,000 | 11,000     |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

Detroit River Interceptor (DRI) Evaluation and Rehabilitation Proiect Title

**Project Status** Active

Wastewater Class Lvl 1

Field Services Class Lvl 2

Interceptor Class Lvl 3

City of Detroit Location

Innovation

Conc. WW Master Plan

☐ Water MP Right Sizing

✓ Reliability/Redundancy

☐ NEWTP Repurposing

**Project New To CIP** 



Visual inspection of a large sewer

Project Engineer/Manager Mini Panicker

**Director** Biren Saparia

### **Project Score**

65.4

Problem Statement Evaluation of the existing condition of the Detroit River interceptor (DRI), and rehabilitation/replacement of portions based on the evaluation results are essential to optimize the transportation capacity of the GLWA collection system and to increase its service life.

Scope of Work / Project Preliminary Scope of Work of the Project is as follows: Review the existing records, investigate the existing Alternatives conditions, provide the necessary cleaning/rehabilitation/replacement to optimize the design capacity of the collection system and to minimize the inflow and infiltration into the collection system.

Other Important Info Challenges: DRI may have flow control challenges for both inspection and rehabilitation. Recommendations from these inspections may reveal further need for cleaning, rehabilitation or replacement.

> Project History: The installation of some of the GLWA interceptors and sewers are dated back to 1912 under various contracts.

Detroit River Interceptor inspection was completed in 5 different phases and there were portions deteriorated with visible surface aggregates, attached encrustation and infiltration. Some trunk sewer inspection revealed sludge deposition with reduced transportation capacity.

| CIP Alias | FY16 | FY17 | FY18   | FY19   | FY20   | FY21   | FY22   | FY23   | FY24   | FY25  | FY26 | Total  | 5-Yr Total |
|-----------|------|------|--------|--------|--------|--------|--------|--------|--------|-------|------|--------|------------|
| 2021      | 0    | 0    | 0      | 10,592 | 16,199 | 23,634 | 9,786  | 1,465  | 10,014 | 9,986 | 0    | 81,676 | 54,885     |
| 2020      | 0    | 0    | 2,647  | 9,424  | 10,000 | 10,000 | 10,000 | 1,000  | 1,000  | 5,000 | 0    | 49,071 | 32,000     |
| 2019      | 0    | 5    | 2,232  | 1,084  | 8,052  | 10,187 | 10,187 | 10,187 | 2,491  | 0     | 0    | 44,425 | 39,697     |
| 2018      |      | 321  | 10,000 | 5,000  | 5,000  |        |        |        | 0      | 0     | 0    | 20,321 | 20,000     |

Project Title Detroit River Interceptor (DRI) Evaluation and Rehabilitation

\* In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

**Proiect Title** North Interceptor East Arm (NIEA) Evaluation and Rehabilitation

Cancelled **Project Status** ✓ Innovation Wastewater Conc. WW Master Plan Class Lvl 1 Field Services ☐ Water MP Right Sizing Class Lvl 2 ✓ Reliability/Redundancy Interceptor Class Lvl 3 ☐ NEWTP Repurposing Multiple Counties Location **Project New To CIP** 65.4 Project Engineer/Manager Todd King **Director** Todd King

00/04/7 FG-36 CD-05/FG FG-16 17/-15 SA 17/-15 SA 17/-15 SA 18/-10 CD-0 - 001-73 EMIL 03/C - 001-73

Elevation profile of part of the NIEA

**Project Score** 

Problem Statement Evaluation of the existing condition of NIEA, and rehabilitation/replacement of portions with structural deficiencies based on the evaluation results are essential to optimize the transportation capacity of the GLWA collection system and to increase its service life

Scope of Work / Project Review the available inspection report (NTH 2015) which recommends additional work along the 33,900 Alternatives lineal feet reach. The report also recommends 1500 lineal feet of potential slip lining. This SOW includes further evaluation of the existing conditions, develop a data gap analysis and provide the necessary cleaning/rehabilitation to optimize the design capacity of the collection system, minimize the inflow and infiltration into the collection system, and extend the service life, evaluate the existing conditions, and provide the necessary cleaning/rehabilitation/replace to optimize the design capacity of the collection system, minimize the inflow and infiltration into the collection system, and to extend the service life.

Other Important Info \*Innovation note: Consider new techniques for assessment.

Project History: The installation of some of the GLWA interceptors and sewers are dated back to 1912 under various contracts.

NIEA inspection by NTH recently revealed structural deficiencies and sludge deposits. Detroit River Interceptor inspection was recently completed and there were portions deteriorated with visible surface agaregates, attached encrustation and infiltration. Some trunk sewer inspection also revealed sludge deposition with reduced transportation capacity. Inspections of sewers to reveal the existing conditions are necessary and shall be done every 5 to 7 years. Recommendations from these inspections may reveal further need for cleaning, rehabilitation or replacement.

Challenges: NIEA may have flow control challenges for both inspection and rehabilitation.

Project Title North Interceptor East Arm (NIEA) Evaluation and Rehabilitation

| CIP Alias | FY16 | FY17 | FY18   | FY19   | FY20   | FY21   | FY22   | FY23  | FY24 | FY25 | FY26 | Total  | 5-Yr Total |
|-----------|------|------|--------|--------|--------|--------|--------|-------|------|------|------|--------|------------|
| 2020      | 0    | 0    |        | 500    | 15,000 | 14,500 | 0      | 0     | 0    | 0    | 0    | 30,000 | 29,500     |
| 2019      | 0    |      |        |        |        | 11,000 | 12,000 | 3,000 |      | 0    | 0    | 26,000 | 26,000     |
| 2018      |      |      | 11,000 | 12,000 | 3,000  |        |        |       | 0    | 0    | 0    | 26,000 | 26,000     |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

Sewer System Infrastructure and Pumping Stations Improvements Proiect Title

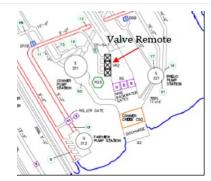
**Project Status** Active

Wastewater Class Lvl 1

Field Services Class Lvl 2

Interceptor Class Lvl 3

Multiple Counties Location


☐ Water MP Right Sizing ☐ Reliability/Redundancy ☐ NEWTP Repurposing

Conc. WW Master Plan

**Project New To CIP** 

☐ Innovation

68.2



Example of a Valve Remote at Conner Pump Station

**Director** Biren Saparia

#### **Project Score**

Project Engineer/Manager Mini Panicker

**Problem Statement** VR-Gates, ISDs, and backwater gates are operational elements in the collection system that help in minimizing the untreated overflows and maximizing the flows to the WRRF and CSO control facilities. They have reached their life expectancy and needs rehabilitation.

Scope of Work / Project Evaluate the existing conditions of the VR-Gates, ISDs, Backwater Gates and Access Hatches, provide **Alternatives** the necessary design and the Construction Assistance for their replacement/rehabilitation.

Other Important Info Google map of VR-3 and VR-9 are included. VR-4, 5, 6, 10, 11 &13 are also part of the project.

Project History: GLWA interceptors and sewers were constructed in the early 1900s. The hatches and access covers secure operations and maintenance access points throughout the system for items such as the backwater gates, ISD, and VR. The backwater gates, ISD, and VR are all critical elements that control and divert flows throughout the system. Most of them have reached their life expectancy and are hard to operate properly. These structures play vital roles in controlling the flow, increasing the storage capacity, and in meeting the NPDES permits.

Challenges: These are operational elements, so flow control may be a challenge.

| CIP Alias | FY16 | FY17 | FY18 | FY19  | FY20  | FY21  | FY22  | FY23   | FY24  | FY25   | FY26  | Total  | 5-Yr Total |
|-----------|------|------|------|-------|-------|-------|-------|--------|-------|--------|-------|--------|------------|
| 2021      | 0    | 0    | 0    | 4     | 1,459 | 2,701 | 5,433 | 16,434 | 9,864 | 3,279  | 1,952 | 41,126 | 37,711     |
| 2020      | 0    | 0    |      | 1,019 | 3,500 | 3,514 | 6,000 | 5,000  | 8,000 | 60,000 | 0     | 87,033 | 26,014     |
| 2019      | 0    |      | 341  | 1,019 | 1,014 |       |       |        |       | 0      | 0     | 2,374  | 2,033      |

Project Title Sewer System Infrastructure and Pumping Stations Improvements

| CIP Alias | FY16 | FY17 | FY18 | FY19  | FY20  | FY21 | FY22 | FY23 | FY24 | FY25 | FY26 | Total | 5-Yr Total |
|-----------|------|------|------|-------|-------|------|------|------|------|------|------|-------|------------|
| 2018      |      |      | 341  | 1,000 | 1,422 |      |      |      | 0    | 0    | 0    | 2,763 | 2,763      |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

**Project Title** NIEA Rehabilitation from WRRF to Gratiot Ave. and Sylvester St.

Project Status Cancelled

Wastewater Class Lvl 1

Field Services Class Lvl 2

Interceptor Class Lvl 3

City of Detroit Location

✓ Innovation

Conc. WW Master Plan

☐ Water MP Right Sizing

✓ Reliability/Redundancy

☐ NEWTP Repurposing

**Project New To CIP** 



Example inspection of a large sewer

Project Engineer/Manager Todd King

**Director** Todd King

**Project Score** 

72.8

Problem Statement Rehabilitation and replacement program of the existing NIEA based upon structural deficiencies identified from the evaluation results. This is essential to optimize the transportation capacity of the GLWA collection system and to increase its life expectancy.

Scope of Work / Project Preliminary Scope of Work of the Project is as follows: Review available data, provide the necessary Alternatives rehabilitation/replacement option, design and implement them to optimize the design capacity of the collection system, minimize the inflow and infiltration into the collection system, and extend the service life.

Other Important Info \*Innovation note: Consider new techniques for assessment. Other Important Info: The installation of some of the GLWA interceptors and sewers are dated back to 1912 under various contracts. NIEA inspection upstream of this segment by NTH recently revealed structural deficiencies and sludge deposits. Recent Detroit River Interceptor and North West Interceptor inspections revealed that there were portions deteriorated with visible surface aggregates, attached encrustation and infiltration. Some trunk sewer inspection also revealed sludge deposition with reduced transportation capacity. Inspections of sewers to reveal the existing conditions are necessary and shall be done every 5 to 7 years. Recommendations from these inspections may reveal further need for cleaning, rehabilitation or replacement

Challenges: NIEA may have flow control challenges for both inspection and rehabilitation.

Project Expenses Compared to Previous CIP Versions (All figures are in \$1.000's)

| CIP Alias | FY16 | FY17 | FY18 | FY19 | FY20 | FY21  | FY22   | FY23  | FY24  | FY25 | FY26 | Total  | 5-Yr Total |
|-----------|------|------|------|------|------|-------|--------|-------|-------|------|------|--------|------------|
| 2020      | 0    | 0    | 0    | 0    | 0    | 0     | 0      | 0     | 0     | 0    | 0    | 0      | 0          |
| 2019      | 0    |      |      | 4    | 760  | 3,295 | 5,689  | 5,689 | 5,566 | 0    | 0    | 21,003 | 15,437     |
|           |      |      |      |      |      |       | VIII 1 | 0.4   |       |      |      |        |            |

VIII-184

Project Title NIEA Rehabilitation from WRRF to Gratiot Ave. and Sylvester St.

| CIP Alias | FY16 | FY17 | FY18  | FY19  | FY20  | FY21 | FY22 | FY23 | FY24 | FY25 | FY26 | Total  | 5-Yr Total |
|-----------|------|------|-------|-------|-------|------|------|------|------|------|------|--------|------------|
| 2018      |      |      | 7,000 | 7,000 | 7,000 |      |      |      | 0    | 0    | 0    | 21,000 | 21,000     |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

Project Title Fairview Pumping Station - Replace Four Sanitary Pumps

**Project Status** Active

Class Lvl 1 Wastewater

Class Lvl 2 Systems Control Center

Class LvI 3 Pump Stations

**Location** City of Detroit

☐ Project New To CIP

☐ NEWTP Repurposing

Conc. WW Master Plan

☐ Water MP Right Sizing

✓ Reliability/Redundancy

□ Innovation



Sanitary pumps at Fairview Pumping Station

**Project Engineer/Manager** Mike Graham

**Director** Grant Gartrell

#### **Project Score**

Problem Statement Replacement and upgrade of pumping equipment's to improve transportation of waste water to the

treatment plant

Scope of Work / Project The scope of work consists of the study, design, and construction for four new pumping systems including

Alternatives inlet and discharge valves and wet well hydraulics. This will also include enlarging doorways, revamping

roadways, and upgrading electrical and control systems.

Other Important Info Challenges: N/A - Active

|           |      | · · · · · · · · · · · · · · · · | <b>u</b> . <b>u u</b> . |        |        |       | • • · · · · · · | .,,  |      |      |      |        |            |
|-----------|------|---------------------------------|-------------------------|--------|--------|-------|-----------------|------|------|------|------|--------|------------|
| CIP Alias | FY16 | FY17                            | FY18                    | FY19   | FY20   | FY21  | FY22            | FY23 | FY24 | FY25 | FY26 | Total  | 5-Yr Total |
| 2021      | 0    | 0                               | 0                       | 3,404  | 27,552 | 5,336 | 984             | 0    | 0    | 0    | 0    | 37,276 | 6,320      |
| 2020      | 0    | 0                               | 1,551                   | 6,000  | 18,000 | 4,891 | 0               | 0    | 0    | 0    | 0    | 30,442 | 22,891     |
| 2019      | 0    | 778                             | 508                     | 12,094 | 14,414 | 3,974 |                 |      |      | 0    | 0    | 31,768 | 30,482     |
| 2018      | 128  | 472                             | 2,100                   | 14,350 | 15,350 |       |                 |      | 0    | 0    | 0    | 32,400 | 31,800     |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

Proiect Title Freud & Conner Creek Pump Station Improvements

**Project Status** Active

Wastewater Class Lvl 1

Systems Control Center Class Lvl 2

Pump Stations Class LvI 3

City of Detroit Location

☐ Innovation

Conc. WW Master Plan

☐ Water MP Right Sizing

✓ Reliability/Redundancy

☐ NEWTP Repurposing

**Project New To CIP** 



Freud Pump Station

Project Engineer/Manager Mini Panicker

**Director** Biren Saparia

### **Project Score**

79.6

Problem Statement The primary objective of this project is to study the overall performance of Connor Creek and Freud sewage pumping stations and develop design, and build an operational strategy to optimize the utilization of interconnected piping and operation between both pumping stations and the Connor Creek Retention and Treatment Basin.

Scope of Work / Project Provide basis of design, and final design for an operational strategy to optimize the utilization of Alternatives interconnected piping and operation between Connor Creek and Freud pumping stations and the Connor Creek Retention and Treatment Basin. Provide construction of the emerging project and construction assistance during construction of the emerging project.

Other Important Info Challenges: Meeting the collection system transport capacity during the construction.

Project History: The Connor Creek Pump Station (CCPS) was originally built in 1928 with four storm water pumps, each with a rated capacity of 500 cubic feet per second (cfs). The CCPS was expanded in 1940 adding four more pumps of the same capacity. The pump station currently has a total capacity of 4,000 cfs and a firm capacity of 3,500 cfs. The pumps are primed using a vacuum system that relies on the flooding of the discharge channel siphon to maintain a water seal, which allows the pumps to be primed. Since the Conner Creek CSO RTB went into operation in November 2005, the discharge channel for the CCPS is drained when the CC RTB is dewatered. Therefore, the vacuum priming system cannot prime the pumps. This results in the CCPS pumps being unable to start until the discharge channel is flooded and the vacuum priming system has a seal on the discharge to prime the pumps. The Freud Pump Station (FPS) was originally built in 1954 with eight storm water pumps, each with a 450 cfs capacity. Two additional pumps were subsequently installed for dewatering and to act as sanitary pumps during dry weather flows. These two pumps are rated at 35 cfs and 20 cfs and are not operated when the storm water pumps are in service. Under the current operating protocol, the FPS is operated first and results in water flowing to the discharge channel of the CCPS, providing sufficient water to

Project Title Freud & Conner Creek Pump Station Improvements

ensure submergence of the vacuum siphon block to allow the vacuum system to prime the CCPS pumps. The FPS pumps do not require priming during normal operations. The discharge pipe from each pump is tied to three 14' x 14' box conduits which transport flow to the CC RTB. The crown elevation of these conduits is approximately 95' and the lowest ground elevation along these conduits ranges from 96' to 100'. Surcharging and flooding have been reported when the CC RTB is filled to the overflow elevation of 98' and more than three of the FPS storm water pumps are in operation

|           |      | •     |       |       |        |        |        |        |        |        |         |         |            |
|-----------|------|-------|-------|-------|--------|--------|--------|--------|--------|--------|---------|---------|------------|
| CIP Alias | FY16 | FY17  | FY18  | FY19  | FY20   | FY21   | FY22   | FY23   | FY24   | FY25   | FY26    | Total   | 5-Yr Total |
| 2021      | 0    | 0     | 0     | 5,631 | 7,364  | 6,445  | 57     | 9,898  | 23,830 | 30,803 | 138,071 | 222,099 | 71,033     |
| 2020      | 0    | 0     | 5,110 | 1,984 | 17,029 | 13,014 | 50,014 | 50,014 | 25,007 | 257    | 0       | 162,429 | 155,078    |
| 2019      | 0    | 2,101 | 1,384 | 1,192 |        | 223    | 1,582  | 11,000 | 15,000 | 0      | 0       | 32,482  | 13,997     |
| 2018      |      | 8,040 | 5,900 | 5,100 | 2,460  | 1,000  |        |        | 0      | 0      | 0       | 22,500  | 14,460     |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

**Project Title** Northeast Pumping Station

Project Status Cancelled

Wastewater Class Lvl 1

Systems Control Center Class Lvl 2

Pump Stations Class Lvl 3

City of Detroit Location

✓ Innovation

Conc. WW Master Plan

☐ Water MP Right Sizing

✓ Reliability/Redundancy

□ NEWTP Repurposing

**Project New To CIP** 



Pump at the Northeast Pumping Station

Project Engineer/Manager Mini Panicker

**Director** Biren Saparia

**Project Score** 

89

Problem Statement This project will include replacement of the inlet gate valves, installation of Pump No. 3 and new chopper pumps, repair of the original service elevator, rebuilding of the spare pumps, repair and upgrade of the wet well, repair and upgrade of the dry well, repair and upgrade of the Gate House air handling systems, emergency bypass of the station, etc.

Scope of Work / Project Provide basis of design, and final design for a complete rehabilitation for the station with an emergency **Alternatives** bypass option. Provide construction of the emerging project and construction assistance during construction.

Other Important Info \*Innovation note: Include energy efficiency.

Project History: The Northeast Sewage Pumping Station was built under contract PC-216. It had only three sanitary pumps and another sewage pump was added under PC-736. Later on OMID added 2 more sewage pumps. Recently under OMID Contract-3,OMID performed the removal of existing discharge piping; installation of a new discharge pipe manifold system; structural alterations to accommodate filling the east and west sides of the existing discharge chamber to support deteriorated external walls, replacement of the NESPS roof structure over the east and west sides; placement of new concrete walls and beams to form a centralized discharge opening to the PCI-4 sewer, construction of precast concrete walls above the central chamber and precast roof slab panels for permanent access; and other associated work to accomplish the repairs etc.

This proposed rehabilitation project is to address the rest of the issues affecting the station which was built in 1969

Challenges: Meeting the collection system transport capacity during the construction.

Project Title Northeast Pumping Station

| CIP Alias | FY16 | FY17 | FY18  | FY19   | FY20   | FY21   | FY22   | FY23   | FY24 | FY25 | FY26 | Total  | 5-Yr Total |
|-----------|------|------|-------|--------|--------|--------|--------|--------|------|------|------|--------|------------|
| 2020      | 0    | 0    |       | 1,000  | 7,000  | 10,500 | 10,500 | 2,500  | 0    | 0    | 0    | 31,500 | 30,500     |
| 2019      | 0    |      |       |        |        | 2,408  | 10,920 | 13,000 |      | 0    | 0    | 26,328 | 26,328     |
| 2018      |      |      | 2,408 | 10,920 | 13,000 |        |        |        | 0    | 0    | 0    | 26,328 | 26,328     |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

Project Title CONDITION ASSESSMENT AT BLUE HILL PUMP STATION

| Project Status | Future Plann   | ned                                             | ☐ Innovation                                                                                                                                          |
|----------------|----------------|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| Class Lvl 1    | Wastewater     |                                                 | ✓ Conc. WW Master Plan                                                                                                                                |
| Class Lvl 2    | Systems Cor    | ntrol Center                                    | □ Water MP Right Sizing                                                                                                                               |
| Class LvI 3    | Pump Statio    | ns                                              | ✓ Reliability/Redundancy                                                                                                                              |
| Location       | City of Detro  | pit                                             | □ NEWTP Repurposing                                                                                                                                   |
|                |                |                                                 | ✓ Project New To CIP                                                                                                                                  |
| Project Engine | eer/Manager    | Todd King                                       |                                                                                                                                                       |
|                | Director       | Todd King                                       | Project Score                                                                                                                                         |
| Proble         | em Statement   |                                                 | Il PS has not been accurately established to the metrics being established for ons. A new condition assessment is required.                           |
| Scope of V     | •              | •                                               | by a multi-discipline team of specialists in pumps, valves, electrical, HVAC, e I&C, security, and building mechanical systems. Perform wire to water |
| Other I        | Important Info | Performance of this pumpir<br>Pumping Stations. | ng station is related with flood control objectives for Conner and Freud                                                                              |
|                |                |                                                 |                                                                                                                                                       |

| •         |      | •    |      |      | •    | _    |      | •    |      |      |      |       |            |
|-----------|------|------|------|------|------|------|------|------|------|------|------|-------|------------|
| CIP Alias | FY16 | FY17 | FY18 | FY19 | FY20 | FY21 | FY22 | FY23 | FY24 | FY25 | FY26 | Total | 5-Yr Total |
| 2021      | 0    | 0    | 0    | 0    | 0    | 286  | 0    | 0    | 0    | 0    | 0    | 286   | 286        |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

Project Title Rouge River In-system Storage Devices

**Project Status** Future Planned Innovation Wastewater Conc. WW Master Plan Class Lvl 1 Systems Control Center ☐ Water MP Right Sizing Class Lvl 2 In System Devices (Dams, ISD's) ☐ Reliability/Redundancy Class Lvl 3 □ NEWTP Repurposing City of Detroit Location ✓ Project New To CIP 8.06 Project Engineer/Manager Mini Panicker **Director** Biren Saparia **Project Score** Problem Statement The Rouge River receives untreated CSO discharges from GLWA CSO outfalls and outfalls from other Member combined sewer systems during wet weather. CSO control strategies that deal with first flush capture from small storms is typically a cost-effective implementation step in a CSO control program. Studies for the Wastewater Master Plan have shown the effectiveness of controlling first flush for small storms with receiving water modeling. 9 locations on DWSD trunk sewers east of the Rouge River are feasible for storing 25 million gallons of CSO during small storms (less than 1-inch of rainfall). Scope of Work / Project Perform sewer inspections, utility survey, and flow metering to establish and prioritize the siting of 9 new In-**Alternatives** System Storage Devices (ISD) Perform preliminary and final design of the ISDs, including upstream and downstream access points, power supply and instrumentation. Construct 9 new inflatable dam in-system storage devices (ISD). Modify existing manholes or construct new access points upstream and downstream of each ISD. Provide electrical power, above ground structures for pneumatic control systems and instrumentation for remote operation. Provide connection for mobile standby generator. Other Important Info The new ISD devices would be installed in trunk sewers owned and operated by DWSD. These are not GLWA leased sewers. A legal agreement may need to be prepared for GLWA to construct, operate, and maintain.

| CIP Alias | FY16 | FY17 | FY18 | FY19 | FY20 | FY21 | FY22 | FY23 | FY24  | FY25  | FY26   | Total  | 5-Yr Total |
|-----------|------|------|------|------|------|------|------|------|-------|-------|--------|--------|------------|
| 2021      | 0    | 0    | 0    | 0    | 0    | 0    | 32   | 86   | 3,374 | 1,984 | 41,321 | 46,797 | 5,476      |

Project Title Rouge River In-system Storage Devices

\* In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

**Project Title** WRRF, Lift Station and Wastewater Collection System Structures Allowance

**Project Status** Closed □ Innovation Wastewater Conc. WW Master Plan Class Lvl 1 **Programs** ☐ Water MP Right Sizing Class Lvl 2 ✓ Reliability/Redundancy Class Lvl 3 **Programs** □ NEWTP Repurposing **Multiple Counties** Location **Project New To CIP** 



**WRRF** 

Project Engineer/Manager Beena Chackunkal

**Director** Dan Alford

#### **Project Score**

Problem Statement Funding required for unplanned, emergency and critical small capital projects in the entire wastewater system

Scope of Work / Project This is an allowance for unplanned critical projects, equipment replacement/rehabilitation, critical asset Alternatives replacement, energy saving projects, etc., at the Wastewater Treatment Plant and other Wastewater Operation Facilities. Unplanned critical items include, but not limited to, mechanical, HVAC, electrical, instrumentation and control, demolition, earthwork, concrete, masonry, etc.

Other Important Info Challenges: N/A - Allowance.

Project History: WRRF has audited twice in the past for all equipment and supporting facilities. These audits helped to assess equipment repair and future planning and execution of rehabilitation/replacement projects at WRRF facilities.

| CIP Alias | FY16 | FY17   | FY18   | FY19   | FY20   | FY21   | FY22   | FY23  | FY24  | FY25  | FY26 | Total  | 5-Yr Total |
|-----------|------|--------|--------|--------|--------|--------|--------|-------|-------|-------|------|--------|------------|
| 2021      | 0    | 0      | 0      | 0      | 0      | 0      | 0      | 0     | 0     | 0     | 0    | 0      | 0          |
| 2020      | 0    | 0      | 21,938 | 1,100  | 1,100  | 1,100  | 1,100  | 1,100 | 1,100 | 5,500 | 0    | 34,038 | 5,500      |
| 2019      | 0    | 14,758 | 2,195  | 1,100  | 1,100  | 2,200  | 2,200  | 2,200 |       | 0     | 0    | 25,753 | 8,800      |
| 2018      |      | 5,587  | 12,000 | 12,000 | 15,000 | 15,000 | 12,000 |       | 0     | 0     | 0    | 71,587 | 66,000     |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

Sewer and Interceptor Rehabilitation Program Proiect Title

**Project Status** Active

Wastewater Class Lvl 1

Class Lvl 2 **Programs** 

Class Lvl 3 **Programs** 

**Multiple Counties** Location

□ Innovation

Conc. WW Master Plan

☐ Water MP Right Sizing

✓ Reliability/Redundancy

☐ NEWTP Repurposing

**Project New To CIP** 



An example interceptor

Project Engineer/Manager Mini Panicker

**Director** Biren Saparia

#### **Project Score**

Problem Statement Rehabilitation and replacement program of the existing sewers and interceptors is identified after the conditio assessment. This replacement, rehabilitation and cleaning program is essential to optimize the transportation capacity of the GLWA collection system and to increase its life expectancy.

Scope of Work / Project Provide CCTV and/or sonar inspection of the GLWA Collection System Interceptors and Trunk Sewers to **Alternatives** reveal the existing conditions as per the National Association of Sewer Service Companies' (NASSCO) Pipeline Assessment Certification Program (PACP) standards, evaluate the existing conditions, and provide the necessary cleaning/rehabilitation/replace to optimize the design capacity of the collection system and to minimize the inflow and infiltration into the collection system.

Other Important Info Challegers: Large sewers and interceptors may have flow control challenges for both inspection and rehabilitation.

> Project History: The installation of some of these interceptors and sewers are dated back to 1912 under various contracts. Detroit River Interceptor inspection was recently completed in 5 different phases and there were portions deteriorated with visible surface aggregates, attached encrustation and infiltration. Some trunk sewer inspection revealed sludge deposition with reduced transportation capacity. Inspections of sewers to reveal the existing conditions are necessary and shall be done every 5 to 7 years. Recommendations from these inspections may reveal further need for cleaning, rehabilitation or replacement.

### Project Expenses Compared to Previous CIP Versions (All figures are in \$1,000's)

| CIP Alias | FY16 | FY17 | FY18   | FY19   | FY20   | FY21   | FY22   | FY23   | FY24   | FY25   | FY26   | Total   | 5-Yr Total |
|-----------|------|------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|------------|
| 2021      | 0    | 0    | 0      | 18,637 | 19,029 | 12,976 | 36,047 | 24,872 | 15,495 | 14,347 | 13,240 | 154,643 | 103,737    |
| 2020      | 0    | 0    | 13,555 | 8,609  | 15,000 | 15,000 | 15,000 |        | 15,000 | 95,000 | 0      | 192,164 | 75,000     |

VIII-195

Project Title Sewer and Interceptor Rehabilitation Program

| CIP Alias | FY16 | FY17  | FY18  | FY19   | FY20   | FY21   | FY22   | FY23   | FY24   | FY25 | FY26 | Total  | 5-Yr Total |
|-----------|------|-------|-------|--------|--------|--------|--------|--------|--------|------|------|--------|------------|
| 2019      | 0    | 3,397 | 7,751 | 10,601 | 10,400 | 11,400 | 11,400 | 11,400 | 11,400 | 0    | 0    | 77,749 | 55,201     |
| 2018      |      | 2,612 | 8,000 | 8,000  | 20,000 | 20,000 | 20,000 |        | 0      | 0    | 0    | 78,612 | 76,000     |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

Proiect Title **CSO Outfall Rehabilitation** 

**Project Status** Active

Wastewater Class Lvl 1

Class Lvl 2 **Programs** 

Class Lvl 3 **Programs** 

**Multiple Counties** Location

□ Innovation

Conc. WW Master Plan

☐ Water MP Right Sizing

✓ Reliability/Redundancy

□ NEWTP Repurposing

**Project New To CIP** 



Sewer tap piping in B009 outfall (left) and sludge buildup and poor masonry in B007 outfall (right)

**Director** Biren Saparia

### **Project Score**

Project Engineer/Manager Mini Panicker

Problem Statement PROJECTS 222006 AND 233001 HAVE BEEN INCORPORATED INTO THIS PROJECT. Rehabilitation of the CSO outfalls is essential to properly discharge the uncontrollable combined sewer overflows to the receiving waters and to prevent sewer back up into the Conveyance System. Recent inspections of the outfalls revealed structural deficiencies like fractures, missing mortar from bricks etc. There are sediment and debris deposits in many of them.

Scope of Work / Project Preliminary Scope of Work of the project is construction. Contract CS-168 will review the existing records, Alternatives evaluate the existing conditions, and provide the necessary design to rehabilitate the outfalls. Another Engineering Services contract will be initiated after the CS-168 contract.

Other Important Info PROJECTS 222006 AND 233001 HAVE BEEN INCORPORATED INTO THIS PROJECT.

Project History: The construction of these outfalls are dated back to the early 1900s under various contracts.

Challenges: Some outfalls are below the river elevation; rehabilitation may be challenging.

| CIP Alias | FY16 | FY17 | FY18 | FY19  | FY20   | FY21   | FY22   | FY23   | FY24   | FY25   | FY26  | Total  | 5-Yr Total |
|-----------|------|------|------|-------|--------|--------|--------|--------|--------|--------|-------|--------|------------|
| 2021      | 0    | 0    | 0    | 3,331 | 4,802  | 11,706 | 9,156  | 11,995 | 10,976 | 8,243  | 4,197 | 64,406 | 52,076     |
| 2020      | 0    | 0    | 9    | 4,000 | 15,102 | 17,947 | 10,926 | 15,102 | 15,102 | 11,000 | 0     | 89,188 | 74,179     |
| 2019      | 0    |      |      | 507   | 3,826  | 10,001 | 10,001 | 10,001 | 10,001 | 0      | 0     | 44,337 | 34,336     |

Project Title CSO Outfall Rehabilitation

| CIP Alias | FY16 | FY17 | FY18  | FY19  | FY20  | FY21  | FY22  | FY23  | FY24 | FY25 | FY26 | Total  | 5-Yr Total |
|-----------|------|------|-------|-------|-------|-------|-------|-------|------|------|------|--------|------------|
| 2018      |      |      | 6,000 | 6,000 | 6,000 | 6,000 | 6,000 | 6,000 | 0    | 0    | 0    | 36,000 | 30,000     |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

Proiect Title **CSO FACILITIES IMPROVEMENT PROGRAM** 

**Project Status** Active

Wastewater Class Lvl 1

Class Lvl 2 **Programs** 

Class Lvl 3 **Programs** 

**Multiple Counties** Location

**Project New To CIP** 

□ Innovation

Conc. WW Master Plan

■ Water MP Right Sizing

☐ NEWTP Repurposing

✓ Reliability/Redundancy



Retrofitted chemical feed pump replacement at Puritan-Fenkell RTB and makeshift wooden stairs to enter Basin Valve Gallery

**Project Engineer/Manager** Chris Nastally

**Director** Chris Nastally

### **Project Score**

**Problem Statement** This program is being established to facilitate the study, design, construction administration, and construction of improvements necessary to maintain the facilities which contribute to the CSO Control Program and compliance herewith.

Scope of Work / Project This program is intended to include studies, design, construction administration, and construction **Alternatives** projects which serve to improve process areas or functions of the CSO Facilities. The overall scope of this program is to complete the following: The CS-299 (Facilities Assessment Project) will have projects that need to be programmed into the CIP over time, Replacement of CSO Facilities Fire Alarm Systems; Structural Condition Assessment Design/Build project; and flushing improvements to Baby Creek CSO Facility. A direct product of the Needs/Condition Assessment and SRP is identification of facility needs with projects identified, prioritized, and conceptual cost estimates. From this output, RFP's will be developed to address these needs. For this purpose, Design and Construction dollars have been identified in the later years of this Program to facilitate design and construction of those identified needs. It is anticipated that the primary drivers of these improvements will be obsolescence/end of service life, excessive O&M problems, reliability, efficiency and system standardization which arise from feedback from operation & maintenance, the scheduled replacement plan, and the needs/condition assessment. Following completion of the Wastewater Master Plan, new projects may be otherwise defined which will be incorporated into the CIP. These projects will likely be entered into the CIP as stand-alone projects rather than falling under this program. Furthermore, upon completion of the NPDES permit, new regulatory requirements may arise which require capital improvements. Depending on the nature of those improvements, they may be stand-alone projects or fall within the elements of this Program.

Project Title CSO FACILITIES IMPROVEMENT PROGRAM

Additionaly, the latest NPDES permit as well as previous ones, given recognition to the Long Term CSO Control Plan and the requirements that outfalls which are high priority non core be addressed by 2037. Part and parcel to this is the development of a refreshed Long Term CSO Control plan to be submitted to the DEQ by 11/15/2022. The new Long Term CSO Control Plan will begin forging a path of Long Term CSO Control and will identify how GLWA will work towards addressing the requirements of the NPDES permit. The intent with the LT Plan is to construct high impact low-cost (relatively speaking) projects in years 5 through 10 of the LT Plan. Then in years 10 through 20 the more expensive improvements are expected to be made. Previous versions of the Long Term CSO Control Plan carried estimated costs of \$1,000,000,000 to \$2,000,000,000. While these costs are very high, and today not well defined beyond previous! LT plans, it is recognized that significant investment in CSO Control is required to be in compliance with the NPDES permit and therefore GLWA is attempting to begin accounting for and planning for this work in our long term financial planning for the CIP. As the Wastewater Masterplan and Long Term CSO Control Plans and CS-299 projects complete, the view of what needs to be done for existing and future CSO Facilities will become more vivid.

Other Important Info (Replaces CIP1313).

Project History: The GLWA CSO Control Program consists of the operations of 6 CSO RTB's, and 3 Screening & Disinfection Facilities (SDF). The fundamental difference between the SDF's and the RTB's is the presence of a bonafied basin versus a large diameter, long effluent pipe/outfall. The long outfall (SDF) functionally serves a purpose similar to the basin (RTB) in terms of storage of combined sewer overflow during a rain event. As a result, the SDF's are fundamentally more difficult to keep clean than the RTB's because flushing systems must transport settled solids (after a storm) long distances to leave the effluent pipe. The CSO Facilities average age is around 15 years with the oldest facilities being constructed in 1994 and the most recent facility being constructed in 2011. A scheduled replacement plan was completed in 2013, which is now out of date, and a high level Needs Assessment conducted in 2016, which didn't identify large scale projects or priorities based on condition other than those of emergency nature. Projects resulting from the 2016 NA were largely emergency projects in nature. A Goal of this program includes standardization of the systems utilized at each facility, as well as improving operational & maintenance conditions at each facility. Given the eras in which the facilities were constructed, and being part of demonstration projects, they have differing technology which makes maintenance and operations duties more difficult. Another goal of this program is to improve the operating conditions of facility assets to increase reliability, efficiency, and compliance with all GLWA regulatory and other levels of service.

Challenges: As this program starts off, there is a lot of design RFPs in the beginning which will lead to la refined projects aimed at improving operations, which lead to RFPs for design and large scale construction projects in the later years (3-5). A significant challenge to be faced will be maintaining the CSO facilities in current operations without the benefit of large-scale improvements of the CSO Systems.

Project Title CSO FACILITIES IMPROVEMENT PROGRAM

Another significant challenge of this program will be unforeseen conditions that may be encountered as facility inspections & condition assessments begin. For example, finding significant structural distress of a basin could lead to increase of budget or extension of timeline of improvements. Considering much of the equipment/systems identified for inclusion in this program are at or near obsolescence or are actively causing O&M issues, delays in improvements could possibly cause operational or compliance issues.

|           |      | <u> </u> |       |       |       |       | •      |        |        |        |        |         |            |
|-----------|------|----------|-------|-------|-------|-------|--------|--------|--------|--------|--------|---------|------------|
| CIP Alias | FY16 | FY17     | FY18  | FY19  | FY20  | FY21  | FY22   | FY23   | FY24   | FY25   | FY26   | Total   | 5-Yr Total |
| 2021      | 0    | 0        | 0     | 6,742 | 7,555 | 7,492 | 10,289 | 10,576 | 4,759  | 20,280 | 85,250 | 152,943 | 53,396     |
| 2020      | 0    | 0        | 481   | 8,442 | 5,604 | 4,553 | 5,825  | 10,325 | 13,361 | 15,000 | 0      | 63,591  | 39,668     |
| 2019      | 0    | 764      | 1,658 | 9,277 | 6,218 | 2,351 | 4,351  | 9,351  | 11,251 | 0      | 0      | 45,221  | 31,548     |
| 2018      |      | 3,428    | 2,247 | 6,400 | 9,000 | 7,200 | 3,610  |        | 0      | 0      | 0      | 31,885  | 28,457     |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

**Project Title** Pilot CSO Netting Facility

**Project Status** Future Planned

Wastewater Class Lvl 1

**CSO** Facilities Class Lvl 2

Multiple CSO Facilities Class Lvl 3

City of Detroit Location

☐ Reliability/Redundancy ☐ NEWTP Repurposing

☐ Water MP Right Sizing

Conc. WW Master Plan

Innovation

✓ Project New To CIP

**Project Engineer/Manager** Chris Nastally

**Director** Chris Nastally

65

**Project Score** 

Problem Statement The First Street CSO Outfall has been identified in the NPDES Permit for the Priority Non-Core Compliance schedule. It is also the nearest and most frequently discharging outfall upstream of the proposed Ralph C Wilson waterfront park on the Detroit River. A pilot facility to demonstrate the application of CSO outfall nets is proposed at this location to keep the sanitary trash from discharging close to this beach, and also to help minimize impacts from fecal coliform bacteria contained in CSO discharge.

Scope of Work / Project Inspect the two 10-ft by 10-foot box culverts that comprise this outfall and establish a location for Alternatives installing the CSO nets, considering outfall structural condition, ease of access for net removal and replacement, and maintenance vehicle parkina. Construct in-line netting facility under Convention Center Drive to the west of Cobo Convention Center.

> Construct access point for future Total Chlorine Residual monitoring to be installed in a second phase of this project.

Other Important Info GLWA staff conducted a field inspection in 2019 of CSO outfall netting facilities constructed in Cleveland in 2004. There are different types of CSO net installations, and GLWA believes that in-line nets provide for the most efficient operation and maintenance.

| CIP Alias | FY16 | FY17 | FY18 | FY19 | FY20 | FY21 | FY22 | FY23  | FY24 | FY25  | FY26  | Total | 5-Yr Total |
|-----------|------|------|------|------|------|------|------|-------|------|-------|-------|-------|------------|
| 2021      | 0    | 0    | 0    | 0    | 0    | 20   | 86   | 1,604 | 318  | 4,507 | 1,234 | 7,769 | 6,535      |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

Proiect Title Meldrum Sewer Diversion and VR-15 Improvements

**Project Status** Future Planned □ Innovation Wastewater Conc. WW Master Plan Class Lvl 1 **CSO** Facilities ☐ Water MP Right Sizing Class Lvl 2

✓ Reliability/Redundancy Class Lvl 3 Multiple CSO Facilities

☐ NEWTP Repurposing City of Detroit Location

✓ Project New To CIP

Project Engineer/Manager Mini Panicker

**Director** Biren Saparia

62.4

**Project Score** 

Problem Statement The Meldrum Sewer is an uncontrolled CSO that discharges through outfall B-07. Currently, this is an untreated CSO discharge. Untreated CSO discahrges let debris from the sewer and bacteria make their way into fresh water bodies and are not good for public health or the environment. The NPDES permit requires control of this outfall to Michigan water quality standards. The Leib Screening and Disinfection Facility was designed with capacity to screen and disinfect the Meldrum Sewer CSO flow, but presently there is no way to get the flow from the Meldrum sewer to the Conant-Mt. Elliot sewer (and to Leib). This project is a high-level recommendation from the wastewater masterplan. An rfp will need to be developed that further develops the project scope necessary to achieve the desired outcome of connecting the Meldrum sewer to the Contant-Mt. Elliot sewer.

Scope of Work / Project The scope of work involves connecting the Meldrum sewer to the Conant-Mt. Elliot Sewer with a diversion Alternatives pipe that is 5 feet in diameter. New gates would be installed in the Meldrum sewer which direct flow through this diversion and into the Conant-Mt. Elliot sewer, which would then be processed through the Leib Screening and Disinfection Facility. These gates would allow dry weather flow to take it's normal route through the Meldrum sewer to the DRI, and would divert wet-weather to Leib SDF. This would reduce untreated CSO discharge, a requirement of the NPDES Permit.

Other Important Info Recommended in DWSD LTCSO Plan of 2008.

| CIP Alias | FY16 | FY17 | FY18 | FY19 | FY20 | FY21 | FY22 | FY23 | FY24 | FY25 | FY26  | Total | 5-Yr Total |
|-----------|------|------|------|------|------|------|------|------|------|------|-------|-------|------------|
| 2021      | 0    | 0    | 0    | 0    | 0    | 0    | 13   | 86   | 586  | 162  | 5,232 | 6,079 | 847        |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

**Project Title** Long Term CSO Control Plan

**Project Status** Future Planned

Wastewater Class Lvl 1

**CSO** Facilities Class Lvl 2

Class Lvl 3 Multiple CSO Facilities

Location Multiple Counties

✓ Project New To CIP

**Project Engineer/Manager** Chris Nastally

**Director** Chris Nastally

Innovation

Conc. WW Master Plan

☐ Water MP Right Sizing

☐ Reliability/Redundancy

□ NEWTP Repurposina

59.6

**Project Score** 

#### **PERMIT NO. MI0022802**

STATE OF MICHIGAN DEPARTMENT OF ENVIRONMENT, GREAT LAKES, AND ENERGY

> **AUTHORIZATION TO DISCHARGE UNDER THE** NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM

In compliance with the provisions of the Federal Water Pollution Control Act, 33 U.S.C., Section 1251 et seq., as amended, Part 31, Water Resources Protection, of the Natural Resources and Environmental Protection Act, 1994 PA 451, as amended (NREPA); Part 41, Sewerage Systems, of the NREPA; and Michigan Executive Order 2011-1.

City of Detroit Water and Sewerage Department 735 Randolph Detroit, MI 48226

Great Lakes Water Authority Detroit MI 48226

Problem Statement The NPDES permit which governs CSO Discharges for GLWA requires GLWA to provide for prohibition. elimination, or adequate treatment of combined sewer discharges containing raw sewage. The current plans of 2008 and 2010 were approved by the EGLE (formerly MDEQ) and are the current plans of record. The new NPDES permit issued in July of 2019 opened the door for GLWA to refresh the Long Term Plan and submit to EGLE for review and approval by 11/15/2022. There are 56 total untreated outfalls operated by GLWA that require control in accordance with the NPDES permit language. The language allows for flexibility in terms of which outfalls GLWA shall address first, second & last, but nonetheless requires all of them to be addressed.

Scope of Work / Project This project will be a predecessor project to executing a long term CSO control plan, as required by the Alternatives NPDES permit. This project will include evaluation of the requirements and work done under the 2008 and 2010 current plans of record, evaluation of elements within the Wastewater Masterplan aimed at CSO Control, evaluation of affordability, evaluation and siting of specific projects to be executed, and evaluation and programming of recommended projects to address affordability. The RFP for this project is presently being drafted.

Other Important Info The wastewater masterplan, currently in draft format, has identified in it elements that are a part of the Long Term Plan, including a new storage conduit on the west-side for first flush capture, in-system storage dams, system diversions, and some netting facilities locations strategically selected. These will need to be evaluated and further fleshed out under this project and also evaluated against current system. requirements, and former Long Term requirements and plans set forth in 2008 and 2010.

| CIP. | Alias | FY16 | FY17 | FY18 | FY19 | FY20 | FY21  | FY22  | FY23 | FY24 | FY25 | FY26 | Total | 5-Yr Total |
|------|-------|------|------|------|------|------|-------|-------|------|------|------|------|-------|------------|
| 2021 |       | 0    | 0    | 0    | 0    | 68   | 2,796 | 2,220 | 710  | 0    | 0    | 0    | 5,794 | 5,726      |

Project Title Long Term CSO Control Plan

\* In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

Proiect Title **Baby Creek Outfall Improvements Project** 

| Project Status | Future Planned                 | ☐ Innovation             |
|----------------|--------------------------------|--------------------------|
| Class Lvl 1    | Wastewater                     | ☐ Conc. WW Master Plan   |
| Class Lvl 2    | CSO Facilities                 | ☐ Water MP Right Sizing  |
| Class Lvl 3    | Baby Creek                     | ☐ Reliability/Redundancy |
| Location       | Multiple Counties              | ☐ NEWTP Repurposing      |
|                |                                | ✓ Project New To CIP     |
| Project Engine | er/Manager Chris Nastally      | 72.8                     |
|                | <b>Director</b> Chris Nastally | Project Score            |

Problem Statement The triple barrel Baby Creek Outfall consists of (3) 14'-6" wide by 17'-6" tall concrete box culverts which extend from the Baby Creek Screening & Disinfection Facility to the Baby Creek Outfall on the Rouge River (approximately 5,500 feet). During the original construction of the facility a project was conducted to remove sludge from the pipe. That is because there was, and is no way to flush the outfall, and no easy way to clean the debris from the outfall. Having debris in the outfall will cause operational issues in terms of loss in capacity to transport flow, potential re-growth of bacteria during events making disinfection more difficult or require more chemical disinfection, and limiting GLWA's ability to perform inspections and adequately assess the condition of the entire pipe.

Scope of Work / Project This project consists of a study and design. Construction is anticipated from the design, but since the Alternatives flushing system solution cannot be known at this time this phase is not included in the project due to the variability in alternatives and their associated costs. The study and design will assess the proper ways to clean the pipes, facilitate future maintenace, flushing of the pipes after rain events, and perform assessments of the backwater gates and ensure proper instrumentation is installed in the outfall to facilitate better operations and monitoring. In addition to this, the current pipes as they pass through the Woodmere Cemetery have a very minimal easement making future maintenance and access very difficult. This project will endeavor to identify the limits of a proper easement which facilitates access necessary for GLWA to properly maintain the outfall, and the Consultant will assist GLWA in acquiring these easements. This easement will likely be through Woodmere Cemetery and the Patton Park between Vernor & the Baby Creek SDF. GLWA also anticipates the Consultant providing Construction Assistance once this project goes into Construction.

Other Important Info The current outfall is not capable of being flushed and the solids level will build up after each rain event. Furthermore, the rising river level continues to impact this facility and the outfalls capacity. Having a build up of sludge does not favor Baby Creek in passing the necessary flows because the headloss through the pipes is small and the capacity of the pipes are reduced to to the reduction in cross-

Project Title Baby Creek Outfall Improvements Project

sectional area.

| CIP Alias | FY16 | FY17 | FY18 | FY19 | FY20 | FY21  | FY22 | FY23 | FY24 | FY25 | FY26 | Total | 5-Yr Total |  |
|-----------|------|------|------|------|------|-------|------|------|------|------|------|-------|------------|--|
| 2021      | 0    | 0    | 0    | 0    | 79   | 1,251 | 907  | 0    | 0    | 0    | 0    | 2,237 | 2,158      |  |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30



OVERVIEW

+ PROCESS

III FINANCE

IV CIP SUMMARY

V PRIORITIZATION

VI PROJECTS BY CATEGORY VII TEN-YEAR OUTLOOK VIII PROJECT DESCRIPTIONS

IX GLOSSARY

# SECTION 3 CENTRALIZED SERVICES

**Project Title** Roofing Systems Replacement at Water Plants and Booster Pump Stations

Project Status Cancelled ✓ Innovation Centralized Services Conc. WW Master Plan Class Lvl 1 **Facilities** ☐ Water MP Right Sizing Class Lvl 2 General Purpose ☐ Reliability/Redundancy Class Lvl 3 ☐ NEWTP Repurposing **Multiple Counties** Location **Project New To CIP** 

Roof in need of repair

**Project Engineer/Manager** Paula Anderson

**Director** Paula Anderson

#### **Project Score**

61

**Problem Statement** This CIP provides funds to replace roofing systems that are past their useful service life and thus too costly to repair. Sound roofing systems are important to protect the process infrastructure inside GLWA's buildings.

Scope of Work / Project This project encompasses the evaluation of all Water Treatment Plant and Booster Pump Station roofs to Alternatives determine their current condition and to prioritize their repair or replacement. The project will evaluate the type of roof, built-up roofing material, flashing, roof drains/conductors and sealing materials that comprise the building envelope. The findings of the roof survey and evaluation will be used to prioritize roof repair and replacement projects for design and construction.

Other Important Info \*Innovation note: use cool roofs.

Project History: Majority of GLWA Water Plant facilities have Built-Up-Roof (BUR) membranes systems commonly referred as "tar and gravel" roofs. Majority of the more than 70 roofs, are over 15 years old and few are even older up to 30 years old. In many instances, inadequate roof system maintenance has been provided.

Challenges: Weather dependent and seasonal work. May require management of several construction projects simultaneously to complete the work. The project should include but, not be limited to the following, material testing for hazardous materials, thermal scans and condition analysis.

| CIP Alias | FY16 | FY17 | FY18 | FY19 | FY20 | FY21 | FY22   | FY23  | FY24  | FY25  | FY26 | Total | 5-Yr Total |
|-----------|------|------|------|------|------|------|--------|-------|-------|-------|------|-------|------------|
| 2021      | 0    | 0    | 0    | 0    | 0    | 0    | 0      | 0     | 0     | 0     | 0    | 0     | 0          |
| 2020      | 0    | 0    |      | 0    | 0    | 225  | 375    | 1,625 | 1,825 | 1,375 | 0    | 5,425 | 4,050      |
|           |      |      |      |      |      |      | VIII-2 | 09    |       |       |      |       |            |

Project Title Roofing Systems Replacement at Water Plants and Booster Pump Stations

| CIP Alias | FY16 | FY17  | FY18  | FY19  | FY20  | FY21 | FY22 | FY23  | FY24  | FY25 | FY26 | Total  | 5-Yr Total |
|-----------|------|-------|-------|-------|-------|------|------|-------|-------|------|------|--------|------------|
| 2019      | 0    |       |       |       | 128   | 169  | 809  | 1,243 | 4,844 | 0    | 0    | 7,193  | 2,349      |
| 2018      |      | 3,000 | 3,000 | 3,000 | 2,500 |      |      |       | 0     | 0    | 0    | 11,500 | 8,500      |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

**Project Title** Roofing Systems Replacement at GLWA WRRF, CSO Retention Treatment Basins (RTB) and Screening

**Project Status** Active

Centralized Services Class Lvl 1

**Facilities** Class Lvl 2

General Purpose Class LvI 3

**Multiple Counties** Location

**Project New To CIP** 

Project Engineer/Manager Beena Chackunkal

✓ Innovation

Conc. WW Master Plan

☐ Water MP Right Sizing

✓ Reliability/Redundancy

☐ NEWTP Repurposing



Photo of Complex – I Dewatering Roof at the WRRF.

**Director** Dan Alford

#### **Project Score**

43.8

**Problem Statement** Some of the roofs at GLWA WRRF facilities are near its end of useful life. The roofs help to protect the expensive equipment by preventing rain water entering through roofs into the facilities.

**Scope of Work / Project** Inspect the roofing system conditions and assess drainage conditions on all the GLWA wastewater Alternatives related facility buildings. Document the roofing systems inspections by taking and submitting high-quality photographs, scaled drawings, sketches, and inspection notes to adequately describe the conditions and deficiencies of the roofing systems and their drainage facilities. Recommend the extent of the roofing repairs and replacements required. Document the roof for each building inspected on the project. Classify the roofs into three (3) main categories, such as, 1) Roofs that require complete replacement, 2) Roofs that only require repair, and 3) Roofs that require no action within the next 10 years. Develop a recommended implementation/planning schedule with budgetary costs tied to the schedule for roofing system repairs and replacements that GLWA should plan for over the next 10 years. Provide preventative care suggestions for the GLWA's roofing systems evaluated under this contract. Provide any OSHA compliance suggestions that may be applicable for the GLWA's roofing systems evaluated under this contract.

Other Important Info \*Innovation note: Use cool roofs.

Complex – II Incinerator (\$1.8M) and Complex – II Dewatering (\$1.0 M) replacement are under consideration to be part of fire remediation project.

Challenges: Roof material testing for asbestos before demolition and flashing will be challenge to manage as low levels of asbestos are very common in the GLWA's old roof type systems.

Project History: Majority of GLWA WRRF facilities have Built-Up-Roof (BUR) membranes systems commonly referred as "tar and gravel" roofs. The old Administration buildings and the Newer Administration buildings

VIII-211

Project Title Roofing Systems Replacement at GLWA WRRF, CSO Retention Treatment Basins (RTB) and Screening

have tar and gravel type of roof systems. The CSO RTB's and SDF's have metal and shingle type of roof systems. Majority of the roofs are over 15 years old and few are even older up to 30 years. These roof systems has been maintained through regular maintenance and repair or patch work performed to fix the leaking roof spots.

| CIP Alias | FY16 | FY17 | FY18  | FY19  | FY20  | FY21  | FY22  | FY23  | FY24  | FY25  | FY26  | Total  | 5-Yr Total |
|-----------|------|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|------------|
| 2021      | 0    | 0    | 0     | 802   | 321   | 91    | 1,745 | 1,724 | 1,708 | 1,702 | 1,652 | 9,745  | 6,970      |
| 2020      | 0    | 0    |       | 278   | 1,092 | 4,142 | 4,114 | 41    | 42    | 0     | 0     | 9,709  | 9,431      |
| 2019      | 0    |      |       | 286   | 709   | 5,575 | 5,114 |       |       | 0     | 0     | 11,684 | 11,684     |
| 2018      |      |      | 2,200 | 2,060 | 1,060 | 1,050 | 540   | 2,140 | 0     | 0     | 0     | 9,050  | 6,910      |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

Security Infrastructure Improvements on Water Facilities Proiect Title

| Project Status | Active               | ☐ Innovation             |
|----------------|----------------------|--------------------------|
| Class Lvl 1    | Centralized Services | ☐ Conc. WW Master Plan   |
| Class Lvl 2    | Security             | ☐ Water MP Right Sizing  |
| Class Lvl 3    | General Purpose      | ☐ Reliability/Redundancy |
| Location       | Multiple Counties    | □ NEWTP Repurposing      |
|                |                      | ✓ Project New To CIP     |

Project Engineer/Manager Michael Lewis

**Director** W. Barnett Jones

#### **Project Score**

Problem Statement GLWA facilities have been designated as "Critical Infrastructure" by the United States Department of Homeland Security (OHS). Critical Infrastructure is under constant threat by malicious people intent on disruption and destruction. GLWA staff is engaged in a continual process of threat and vulnerability assessment to our facilities, operations, and staff. Using several assessment tools including, OHS Site Assessments, incorporating

> AWWA security recommendations, and utilizing GLWA's historical assessment data, we have the basis for initiating a strategic plan for security infrastructure improvements. The resulting data from these assessments formulate recommendations for mitigating vulnerabilities. The implementation of these recommendations requires an efficient and effective design, procurement, and construction process.

Scope of Work / Project Water Works Park: Additional coverage where boats dock and by the screening house. Video Alternatives assessment wherever there are alarm points. Primary Building needs to be secured. Need video coverage. Switchgear room needs to be secured. Exterior video coverage of oxygen tanks and entrance lo chlorine room. Secure transformer enclosures -Raw water Booster Station. Interior intrusion detection devices need to be installed at high lift building-glass break, motion sensors, etc. Install Card readers to interior of the new plant where critical assets are located. Enhanced perimeter fencing and gates. Enhanced perimeter detection system Replacement of analog cameras

> Northeast Water Plant: Chemical building needs access control intrusion devices. Video assessment wherever there are alarm points. Flocculate building needs intrusion devices. Interior intrusion devices for uncovered areas. Enhanced perimeter fencing and gates Replacement of analog cameras. Enhanced perimeter detection system.

Springwells Water Plant: Enhanced access control system Chemical Building, basins and tunnel not secured. Video assessment wherever there are alarm points Enhanced perimeter detection system.

#### Proiect Title Security Infrastructure Improvements on Water Facilities

Enhanced perimeter fencing and gates Replacement of analog cameras

Lake Huron Water Treatment Plant: Cameras at the Clear Well, Main Transformer Station and the Emergency Generators. Enhanced perimeter fencing and gates. Replacement of analog cameras. Enhanced perimeter detection system.

Southwest Water Plant: Video assessment wherever there are alarm points. Replace door closures to chlorine room so the doors swing shut and lock automatically. Install card readers to chlorine room and chlorine evaporation room. Enhanced perimeter fencing and gates. Replacement of analog cameras. Enhanced perimeter detection system.

Southwest Water Treatment Intake: Provide security for the intake platform. Enhanced perimeter fencing and gates. Replacement of analog cameras

Belle Isle Intake: Enhanced Access Control. Perimeter fencing and gates. Intrusion detection. Video assessment and surveillance.

Chlorine Storage Areas at all Plants: Enhanced Access Control. Intrusion detection. Video assessment and surveillance.

Other Important Info GLWA has a responsibility in the layered approach to critical infrastructure security; partnering with Federal, State, and Local law enforcement entities to minimize and respond to threats. This partnership required GLWA to maintain a minimum security posture equating to the Critical Infrastructure designation. Implementation of the security protocols were none existent, and improving the GLWA security foot print can reduce our vulnerabilities and enhance our response to known threats.

| CIP Alias | FY16 | FY17 | FY18 | FY19 | FY20  | FY21  | FY22  | FY23 | FY24 | FY25 | FY26 | Total  | 5-Yr Total |  |
|-----------|------|------|------|------|-------|-------|-------|------|------|------|------|--------|------------|--|
| 2021      | 0    | 0    | 0    | 0    | 4,029 | 4,018 | 2,603 | 0    | 0    | 0    | 0    | 10,650 | 6,621      |  |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

Security Infrastructure Improvements for Wastewater Facilities Proiect Title

**Project Engineer/Manager** Michael Lewis

**Director** W. Barnett Jones

#### **Project Score**

Problem Statement GLWA facilities have been designated as "Critical Infrastructure" by the United States Department of Homeland Security (OHS). Critical Infrastructure is under constant threat by malicious people intent on disruption and destruction. GLWA staff is engaged in a continual process of threat and vulnerability assessment to our facilities, operations, and staff. Using several assessment tools including, OHS Site Assessments, incorporating

> AWWA security recommendations, and utilizing GLWA's historical assessment data, we have the basis for initiating a strategic plan for security infrastructure improvements. The resulting data from these assessments formulate recommendations for mitigating vulnerabilities. The implementation of these recommendations requires an efficient and effective design, procurement, and construction process.

Scope of Work / Project Water Works Park: Additional coverage where boats dock and by the screening house. Video Alternatives assessment wherever there are alarm points. Primary Building needs to be secured. Need video coverage. Switchgear room needs to be secured. Exterior video coverage of oxygen tanks and entrance lo chlorine room. Secure transformer enclosures -Raw water Booster Station. Interior intrusion detection devices need to be installed at high lift building-glass break, motion sensors, etc. Install Card readers to interior of the new plant where critical assets are located. Enhanced perimeter fencing and gates. Enhanced perimeter detection system Replacement of analog cameras

> Northeast Water Plant: Chemical building needs access control intrusion devices. Video assessment wherever there are alarm points. Flocculate building needs intrusion devices. Interior intrusion devices for uncovered areas. Enhanced perimeter fencing and gates Replacement of analog cameras. Enhanced perimeter detection system.

Springwells Water Plant: Enhanced access control system Chemical Building, basins and tunnel not secured. Video assessment wherever there are alarm points Enhanced perimeter detection system.

#### Security Infrastructure Improvements for Wastewater Facilities Proiect Title

Enhanced perimeter fencing and gates Replacement of analog cameras

Lake Huron Water Treatment Plant: Cameras at the Clear Well, Main Transformer Station and the Emergency Generators. Enhanced perimeter fencing and gates. Replacement of analog cameras. Enhanced perimeter detection system.

Southwest Water Plant: Video assessment wherever there are alarm points. Replace door closures to chlorine room so the doors swing shut and lock automatically. Install card readers to chlorine room and chlorine evaporation room. Enhanced perimeter fencing and gates. Replacement of analog cameras. Enhanced perimeter detection system.

Southwest Water Treatment Intake: Provide security for the intake platform. Enhanced perimeter fencing and gates. Replacement of analog cameras

Belle Isle Intake: Enhanced Access Control. Perimeter fencing and gates. Intrusion detection. Video assessment and surveillance.

Chlorine Storage Areas at all Plants: Enhanced Access Control. Intrusion detection. Video assessment and surveillance.

Other Important Info GLWA has a responsibility in the layered approach to critical infrastructure security; partnering with Federal, State, and Local law enforcement entities to minimize and respond to threats. This partnership required GLWA to maintain a minimum security posture equating to the Critical Infrastructure designation. Implementation of the security protocols were none existent, and improving the GLWA security foot print can reduce our vulnerabilities and enhance our response to known threats.

| CIP Alias | FY16 | FY17 | FY18 | FY19 | FY20  | FY21  | FY22 | FY23 | FY24 | FY25 | FY26 | Total | 5-Yr Total |
|-----------|------|------|------|------|-------|-------|------|------|------|------|------|-------|------------|
| 2021      | 0    | 0    | 0    | 0    | 1,579 | 1,051 | 0    | 0    | 0    | 0    | 0    | 2,630 | 1,051      |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

Project Title LED Lighting and Lighting Control Improvements

**Project Status** Active ✓ Innovation Centralized Services Conc. WW Master Plan Class Lvl 1 ☐ Water MP Right Sizing Class Lvl 2 **Energy Management** ☐ Reliability/Redundancy General Purpose Class Lvl 3 ☐ NEWTP Repurposing **Multiple Counties** Location **Project New To CIP** 8.06 Example LED light fixture Project Engineer/Manager Eric Griffin **Director** John Norton **Project Score** Problem Statement Energy savings, demand reduction improved visibility, safety, operational efficiency and worker productivity. Budget was cut to \$500,000.00 we plan on reducing scope to 4 Booster stations only under this CIP.MFG 7/25/2019 Scope of Work / Project Remove identified old fixtures and replace with new LED lamps and advanced control systems. **Alternatives** Other Important Info Challenges: Some outfalls are below the river elevation; installation may be challenging. Project History: An audit was completed in 2010/2011 but little action was taken. Advancement in lighting technology since this audit has rendered it obsolete as to recent innovations, technology and cost. Across the system, equipment is in poor condition and exceeds its end of life. Some existing fixtures are antiques and compared to today's lighting, cannot meet minimum lighting standards. A well detailed audit is to be carried out to determine the best suitable replacement lamps based on a set performance criteria, lighting controls to be incorporated and in cases where delamping might be

### Project Expenses Compared to Previous CIP Versions (All figures are in \$1,000's)

requirements

| CIP Alias | FY16 | FY17 | FY18 | FY19  | FY20  | FY21 | FY22 | FY23 | FY24 | FY25 | FY26 | Total | 5-Yr Total |
|-----------|------|------|------|-------|-------|------|------|------|------|------|------|-------|------------|
| 2021      | 0    | 0    | 0    | 6     | 0     | 50   | 248  | 252  | 0    | 0    | 0    | 556   | 550        |
| 2020      | 0    | 0    |      | 250   | 250   | 0    | 0    | 0    | 0    | 0    | 0    | 500   | 250        |
| 2019      | 0    |      | 2    | 1,172 | 1,600 |      |      |      |      | 0    | 0    | 2,774 | 2,772      |

an option, equivalent/appropriate lighting output and level is to be maintained per task/space

Project Title LED Lighting and Lighting Control Improvements

| CIP Alias | FY16 | FY17 | FY18 | FY19 | FY20 | FY21 | FY22 | FY23 | FY24 | FY25 | FY26 | Total | 5-Yr Total |
|-----------|------|------|------|------|------|------|------|------|------|------|------|-------|------------|
| 2018      |      |      | 933  | 933  | 933  |      |      |      | 0    | 0    | 0    | 2,799 | 2,799      |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

Project Title As-needed CIP Implementation Assistance and Related Services

**Project Status** Closed □ Innovation Centralized Services Conc. WW Master Plan Class Lvl 1 ☐ Water MP Right Sizing Class Lvl 2 **Programs** ☐ Reliability/Redundancy Class Lvl 3 **Programs** ☐ NEWTP Repurposing Multiple Counties Location **Project New To CIP** Make a Plan **Project Engineer/Manager** Gaylor Johnson / Dan Edwards **Director** Dan Alford **Project Score** Problem Statement The purpose of this proposed contract is to provide implementation assistance and related services on a task order basis to support the GLWA. Scope of Work / Project This project provides for multi-discipline Engineering services on an "as-needed basis" to support GLWA's Alternatives Water & Sewer Systems. The purpose of this proposed contract is to provide implementation assistance and related services on a task order basis to support the GLWA. The services provided under this contract include assistance in capital projects definition and planning, design and construction phase procurement assistance and monitoring; third party contract administration/oversight assistance/scheduling services; claims/changes analysis and resolution; technical training; value engineering (VE) services on selected design projects; develop engineering study reports; identify minimum requirements, scope of work, basis of process design, performance criteria, minimum standards of quality, and preliminary design and oversight services for design/build contracts; proposal analysis assistance; engineering forensic analysis, and additional program support services.

#### Project Expenses Compared to Previous CIP Versions (All figures are in \$1,000's)

Other Important Info Challenges: N/A - Active

| CIP Alias | FY16 | FY17  | FY18 | FY19  | FY20  | FY21  | FY22 | FY23 | FY24 | FY25 | FY26 | Total | 5-Yr Total |
|-----------|------|-------|------|-------|-------|-------|------|------|------|------|------|-------|------------|
| 2020      | 0    | 0     | 0    | 0     | 0     | 0     | 0    | 0    | 0    | 0    | 0    | 0     | 0          |
| 2019      | 0    | 210   | 500  | 1,606 | 1,606 | 1,606 |      |      |      | 0    | 0    | 5,528 | 4,818      |
| 2018      | 4770 | 1,400 | 100  |       |       |       |      |      | 0    | 0    | 0    | 6,270 | 100        |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

**Project Title** Wastewater General Engineering Services on an As-needed Basis

**Project Status** Closed □ Innovation Centralized Services Conc. WW Master Plan Class Lvl 1 **Programs** ☐ Water MP Right Sizing Class Lvl 2 ☐ Reliability/Redundancy Class Lvl 3 **Programs** ☐ NEWTP Repurposing **Multiple Counties** Location **Project New To CIP** 



Example of pipe being laid

Project Engineer/Manager Beena Chackunkal

**Director** Dan Alford

#### **Project Score**

**Problem Statement** Various engineering as needed services for design and replacement of aging water and sewer lines.

Scope of Work / Project This project involves designing water main and lateral sewer replacement projects for aging and **Alternatives** dysfunctional water mains and sewers throughout the system and several projects at the WRRF under different tasks on an as-needed basis. The work also includes civil, structural, architectural, hydraulics,

mechanical, electrical, surveying, instrumentation and piping design services.

| CIP Alias | FY16  | FY17 | FY18 | FY19 | FY20 | FY21 | FY22 | FY23 | FY24 | FY25 | FY26 | Total  | 5-Yr Total |
|-----------|-------|------|------|------|------|------|------|------|------|------|------|--------|------------|
| 2021      | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0      | 0          |
| 2020      | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0      | 0          |
| 2019      | 0     | 282  | 114  | 114  | 91   |      |      |      |      | 0    | 0    | 601    | 205        |
| 2018      | 10064 | 228  | 228  |      |      |      |      |      | 0    | 0    | 0    | 10,520 | 228        |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

Project Title As-Needed General Engineering Services

 Project Status
 Active
 □ Innovation

 Class Lvl 1
 Centralized Services
 □ Conc. WW Master Plan

 Class Lvl 2
 Programs
 □ Water MP Right Sizing

 Class Lvl 3
 Programs
 □ Reliability/Redundancy

 Location
 Multiple Counties
 □ NEWTP Repurposing

Project New To CIP



Project Engineer/Manager Grant Gartrell

**Director** Grant Gartrell

#### **Project Score**

Problem Statement Allowance for the study and design of critical projects throughout the system prior to bidding and

construction.

Scope of Work / Project As-needed engineering services for water and wastewater engineering.

**Alternatives** 

Other Important Info Challenges: N/A - Active

|           | IP Alias         FY16         FY17         FY18         FY19         FY20         FY21         FY22         FY23         FY24         FY25         FY26         Total         5-Yr Total |      |      |      |      |      |      |      |      |      |      |        |            |  |  |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|------|------|------|------|------|------|------|------|--------|------------|--|--|
| CIP Alias | FY16                                                                                                                                                                                     | FY17 | FY18 | FY19 | FY20 | FY21 | FY22 | FY23 | FY24 | FY25 | FY26 | Total  | 5-Yr Total |  |  |
| 2021      | 0                                                                                                                                                                                        | 0    | 0    | 5    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 5      | 0          |  |  |
| 2020      | 0                                                                                                                                                                                        | 0    | 2    | 94   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 96     | 0          |  |  |
| 2019      | 0                                                                                                                                                                                        | 316  | 406  | 327  | 50   |      |      |      |      | 0    | 0    | 1,099  | 377        |  |  |
| 2018      | 14012                                                                                                                                                                                    | 446  | 436  | 386  |      |      |      |      | 0    | 0    | 0    | 15,280 | 822        |  |  |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

Proiect Title As-Needed Geotechnical and Related Engineering Services

**Project Status** Active □ Innovation Centralized Services Conc. WW Master Plan Class Lvl 1 ☐ Water MP Right Sizing Class Lvl 2 **Programs** ☐ Reliability/Redundancy Class Lvl 3 **Programs** ☐ NEWTP Repurposing **Multiple Counties** Location **Project New To CIP** 



Example of testing being performed

**Project Engineer/Manager** Peter Fromm

**Director** Grant Gartrell

#### **Project Score**

**Problem Statement** GLWA engineering and operations need a contract mechanism to obtain professional engineering services in a timely manner to investigate environmental, geotechnical and specialized engineering problems that occur on a regular basis throughout the system.

Scope of Work / Project This engineering/technical services contract involves as-needed engineering and technical services Alternatives related to geotechnical investigations and related geotechnical engineering, construction materials sampling and testing, environmental media sampling and testing, soils sampling and testing, land surveying, corrosion testing and inspection, computer-aided design, and construction inspection. This contract includes design, construction services, and resident project representation for the follow transmission main projects:

- 1. 1802775 Park-Merriman 24-inch Water Main
- 2. 1803621 Wick Road 48-inch Transmission Main
- 3. 1804129 Schoolcraft Road 48-inch Transmission Main

| CIP Alias | FY16 | FY17 | FY18 | FY19 | FY20  | FY21 | FY22 | FY23 | FY24 | FY25 | FY26 | Total | 5-Yr Total |
|-----------|------|------|------|------|-------|------|------|------|------|------|------|-------|------------|
| 2021      | 0    | 0    | 0    | 0    | 1,415 | 715  | 0    | 0    | 0    | 0    | 0    | 2,130 | 715        |
| 2020      | 0    | 0    | 0    | 620  | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 620   | 0          |
| 2019      | 0    | 230  | 238  | 477  | 477   | 477  | 238  |      |      | 0    | 0    | 2,137 | 1,669      |
| 2018      |      | 650  | 907  | 333  | 333   | 333  |      |      | 0    | 0    | 0    | 2,556 | 1,906      |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

Project Title Geotechnical and Related Services on an As-Needed Basis

 Project Status
 Closed
 □ Innovation

 Class Lvl 1
 Centralized Services
 □ Conc. WW Master Plan

 Class Lvl 2
 Programs
 □ Water MP Right Sizing

 Class Lvl 3
 Programs
 □ Reliability/Redundancy

Location Multiple Counties 

NEWTP Repurposing

 $\square$  Project New To CIP



**Project Engineer/Manager** Grant Gartrell

Director Grant Gartrell Project Score

**Problem Statement** As Needed geotechnical consulting services.

Scope of Work / Project The work includes consultant services for geotechnical work on as-needed basis. The work also provides

Alternatives for additional engineering/ technical services as requested.

| CIP Alias | FY16 | FY17 | FY18 | FY19 | FY20 | FY21 | FY22 | FY23 | FY24 | FY25 | FY26 | Total | 5-Yr Total |
|-----------|------|------|------|------|------|------|------|------|------|------|------|-------|------------|
| 2020      | 0    | 0    | 0    | 0    |      |      |      |      |      |      | 0    | 0     | 0          |
| 2019      | 0    | 164  |      |      |      |      |      |      |      | 0    | 0    | 164   | 0          |
| 2018      | 2441 | 132  |      |      |      |      |      |      | 0    | 0    | 0    | 2,573 | 0          |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

Project Title General Engineering Services

**Project Status** Closed

Class Lvl 1 Centralized Services

Class Lvl 2 Programs

Class Lvl 3 Programs

**Location** Multiple Counties

Innovation

7 Conc. WW Master Plan

☐ Water MP Right Sizing

☐ Reliability/Redundancy

☐ NEWTP Repurposing

Project New To CIP



Analytical Lab

Project Engineer/Manager Beena Chackunkal

**Director** Dan Alford

#### **Project Score**

Problem Statement As needed multi-discipline engineering services for various small scale projects at WTP and WRRF.

Scope of Work / Project This project provides for rapid design turn-around for a variety of projects on an as-needed basis

Alternatives providing multi-disciplinary professional services including meter pit improvement services.

Other Important Info Challenges: N/A - Active

| CIP Alias | FY16 | FY17  | FY18  | FY19 | FY20 | FY21 | FY22 | FY23 | FY24 | FY25 | FY26 | Total | 5-Yr Total |
|-----------|------|-------|-------|------|------|------|------|------|------|------|------|-------|------------|
| 2018      | 28   | 1,250 | 1,154 |      |      |      |      |      | 0    | 0    | 0    | 2,432 | 1,154      |
| 2020      | 0    | 0     | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0     | 0          |
| 2019      | 0    | 138   | 572   | 916  | 425  |      |      |      |      | 0    | 0    | 2,051 | 1,341      |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

**Project Title** Power Quality: Electric Metering Improvement Program

**Project Status** Future Planned

Centralized Services Class Lvl 1

Class Lvl 2 **Programs** 

Class Lvl 3 **Programs** 

**Multiple Counties** Location

□ Innovation

Conc. WW Master Plan

☐ Water MP Right Sizing

✓ Reliability/Redundancy

☐ NEWTP Repurposing

 $^{oxed}$  Project New To CIP



Example of an electric meter

Project Engineer/Manager Eric Griffin

**Director** John Norton

#### **Project Score**

Problem Statement Advanced meters for measuring power usage in real-time to reduce the electrical demands and further optimize load management practices,

> GLWA is experiencing a lot of power outages at our facilities. The installation of the New Power Monitors will give us real wave form data to determine why we are having outages and the time period of sagging or swelling voltage which effects the integrity of our equipment. MFG 7/25/2019

Scope of Work / Project This program will increase the number of electric meters at pumping stations and treatment facilities to Alternatives allow for active demand management to reduce electricity rates. The meters can be tied to the existing data management system for data archiving and use.

> The installation of the New Power Monitors will give us real wave form data to determine why we are having outages and the time period of sagging or swelling voltage which effects the integrity of our equipment.MFG 07/25/2019

Other Important Info Project History: Project is in the works targeting high demand (kW) sites - all the water treatment plants (Phase 1)

> We would like to change the project to design build and move up on the CIP. The outages we are having are affecting our preassuers that are causing water main breaks and boil water advisories, We need this to better communicate DTE problems that we are faced with and come up with solutions to improve the process or equipment.MFG 7/25/2019

| CIP Alias | FY16 | FY17 | FY18 | FY19 | FY20 | FY21 | FY22           | FY23  | FY24  | FY25  | FY26  | Total | 5-Yr Total |
|-----------|------|------|------|------|------|------|----------------|-------|-------|-------|-------|-------|------------|
| 2021      | 0    | 0    | 0    | 0    | 86   | 446  | 1,540          | 1,337 | 112   | 445   | 2,904 | 6,870 | 3,880      |
| 2020      | 0    | 0    |      | 0    | 0    | 0    | 0              | 0     | 0     | 5,000 | 0     | 5,000 | 0          |
| 2019      | 0    |      |      |      | 120  | 120  | 510<br>VIII-22 | 878   | 4,372 | 0     | 0     | 6,000 | 1,628      |

Project Title Power Quality: Electric Metering Improvement Program

| CIP Alias | FY16 | FY17  | FY18  | FY19  | FY20  | FY21  | FY22  | FY23 | FY24 | FY25 | FY26 | Total | 5-Yr Total |
|-----------|------|-------|-------|-------|-------|-------|-------|------|------|------|------|-------|------------|
| 2018      |      | 1,000 | 1,000 | 1,000 | 1,000 | 1,000 | 1,000 |      | 0    | 0    | 0    | 6,000 | 5,000      |

<sup>\*</sup> In Table above, for CIP Alias 2021, FY26 column represents expenses for FY26 through FY30

# IX. GLOSSARY

|        | Business Case Evaluations                     |
|--------|-----------------------------------------------|
| BDF    | Biosolids Dryer Facility                      |
| BFP    | Belt Filter Press                             |
| BGD    | Billion Gallons per Day                       |
| BPS    | Booster Pumping Station                       |
| CB     | Construction Bond                             |
| CCR    | Consumer Confidence Rule                      |
| CCTV   | Closed-Circuit Television                     |
| cfs    | cubic feet per second                         |
|        | Capital Improvement Plan                      |
|        | GLWA Capital Management Group                 |
|        | Central Offload Facility                      |
|        | Central Services Facility                     |
|        | Combined Sewer Overflow                       |
| CTA    | Common To All                                 |
|        | Clean Water Act                               |
| DD0T   | Detroit Department of Transportation          |
| DE     |                                               |
| DI     |                                               |
| DRI    | Detroit River Interceptor                     |
| DRO    | Detroit River Outfall                         |
| dtpd   | dry tons per day                              |
| DWRF   | Drinking Water Revolving Fund                 |
|        | Detroit Water and Sewerage Department         |
| DWSD-R | Specifying the new, Detroiter-focused Detroit |
|        | Water and Sewerage Department                 |
|        | United States Environmental Protection        |
|        | Agency                                        |
| GIS    | Geographic Information System                 |
|        | Great Lakes Water Authority                   |
| GPS    | Global Positioning System                     |
|        | Heating, Ventilation, and Air Conditioning    |
| I&C    | Instrumentation & Controls                    |
| I&E    | Improvement & Extension                       |
|        | -                                             |

| IDF    | Intermediate Distribution Facilities     |
|--------|------------------------------------------|
| IGA    | Investment Grade Audit                   |
| ILP    | Intermediate Lift Pumps                  |
| ISD    | In System Storage Device                 |
| IT     | Information Technology                   |
| ITS    | Information Technology and Services      |
| IWC    | Industrial Waste Control                 |
| LCR    | Lead and Copper Rule                     |
| LED    | Light-Emitting Diode                     |
|        | Lower Explosive Limit                    |
|        | Laboratory Information Management        |
| •      | System/Project Information Management    |
|        | System                                   |
| LH WTP | Lake Huron Water Treatment Plant         |
| MACP   | Manhole Assessment Certification Program |
|        | Master Bond Ordinance                    |
| MCC    | Motor Control Centers                    |
| MDEQ   | Michigan Department of Environmental     |
|        | Quality                                  |
| MDF    | Main Distribution Facilities             |
| MG     | Million Gallons                          |
| MGD    | Million Gallons per Day                  |
|        | New Administration Building at the WRRF  |
| NASSCO | National Association of Sewer Service    |
|        | Companies                                |
|        | Northeast Water Treatment Plant          |
| NEC    | National Electric Code                   |
| NESDS  | Northeast Sewerage Disposal System       |
| NIEA   | North Interceptor East Arm               |
| NPDES  | US EPA National Pollutant Discharge      |
|        | Elimination System                       |
| NPL    | US EPA National Priorities List          |
| 0&M    | Operations & Maintenance                 |
| OEM    | Original Equipment Manufacturer          |
|        |                                          |



OVERVIEW

II CIP DEVELOPMENT + PROCESS

III FINANCE

IV CIP SUMMARY

V PRIORITIZATION

VI PROJECTS BY CATEGORY VII TEN-YEAR OUTLOOK VIII PROJECT DESCRIPTIONS

IX GLOSSARY

| O-NWIOakwood-Northwest Interceptor OSHAOccupational Safety and Health Administration OWIOakwood Interceptor PACPowdered Activated Carbon PACPPipeline Assessment Certification Program PCCPPre-Stressed Concrete Cylinder Pipe | SDFScreening and Disinfection Facility SDWASafe Drinking Water Act SFESecondary Final Effluent SFPSludge Feed Pump SOWScope of Work SPW WTPSpringwells Water Treatment Plant |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PEASPrimary Effluent to Activated Sludge PLCProgrammable Logic Controller PLDProgrammable Logic Device PRVPressure Reducing Valve                                                                                              | SRPScheduled Replacement Program SW WTPSouthwest Water Treatment Plant T&OTaste and Odor TACTechnical Advisory Committee                                                     |
| PSPump Station RASReturn Activated Sludge RRORouge River Outfall RRO-2Rouge River Outfall No. 2 RTBRetention Treatment Basins                                                                                                  | TCRTotal Coliform Rule TPCTournament Players Championship Golf Course in Dearborn VFDVariable Frequency Drive VR-GatesValve Remote Gates                                     |
| RVSDSRouge Valley Sewerage Disposal System RWCSRegional Water Transmission System SAMOGLWA System Analytics and Meter Operations SCADASupervisory Control And Data Acquisition (GLWA uses Ovation brand)                       | WAMWork and Asset Management WMPWater Master Plan WMPUWater Master Plan Update WRRFWater Resource Recovery Facility WSCWest Service Center                                   |
| SCCSystems Control Center SCPSmall Capital Projects SCUBA actuatorsSelf-Contained Universal Bi-directional Actuator                                                                                                            | WTPWater Treatment Plant WWP WTPWater Works Park Water Treatment Plant WWTPWastewater Treatment Plant (old terminology)                                                      |



OVERVIEW

# PROCESS

III FINANCE

IV CIP SUMMARY

V PRIORITIZATION

VI PROJECTS BY CATEGORY VII TEN-YEAR OUTLOOK VIII PROJECT DESCRIPTIONS

IX GLOSSARY

# X. APPENDICES

Appendix A ...... Water Business Case Evaluations
Appendix B ...... Sewer Business Case Evaluations

Appendix C......Centralized Services Business Case Evaluations