Units of Service for Non-Master Metered Customers of Great Lakes Water Authority and System Water Audit

29 November 2018

November 2018 Water Charges Work Group

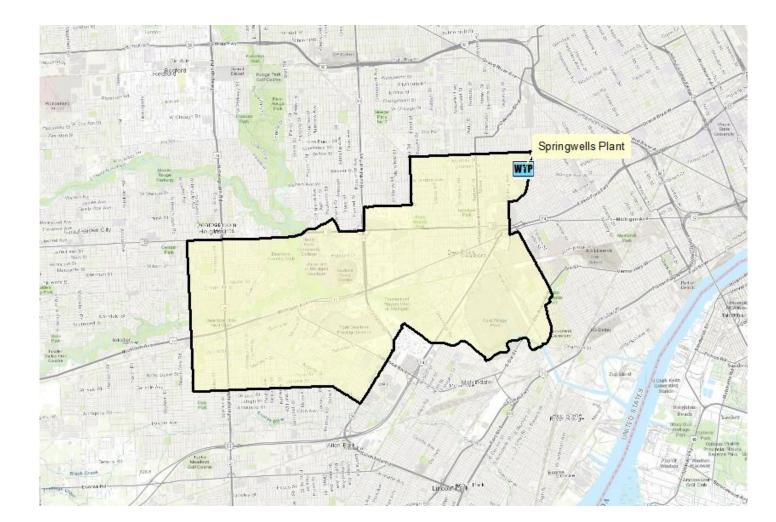
Phase 2 Report Summary

Units of Service for Non-Master Metered Customers of Great Lakes Water Authority and System Water Audit

<u>Phase 1 (March 2017 – Dec 2017):</u>

- Desktop Analysis
- Best Available Data
- Use of benchmarks and peers

Phase 2 (Jan 2018 – Nov 2018):

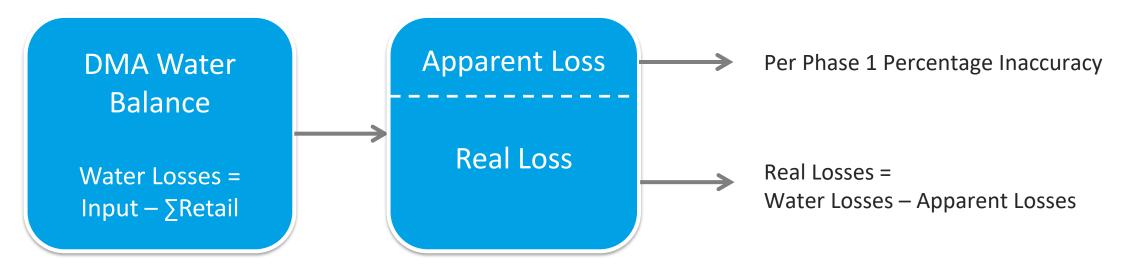

• Obtain data from the field

- Improve processes
- Collaboration

Phase 2 Work Areas

- 1) Conduct District Metered Area Analyses for Dearborn and Detroit
- 2) Evaluate Water Treatment Plant Water Production Flow Meter Testing
- 3) Evaluate Water Transmission Main Blow Off Valve Assessment
- 4) Develop Master Metering Approaches for Dearborn and Detroit
- 5) Develop a Long-term Water Audit Approach for GLWA
- 6) Develop a Process for an Annual Wholesale Meter Audit
- 7) Identify and Prioritize Data Gaps
- 8) Preparation of Phase 2 Report (available via Outreach Portal by 11/30)

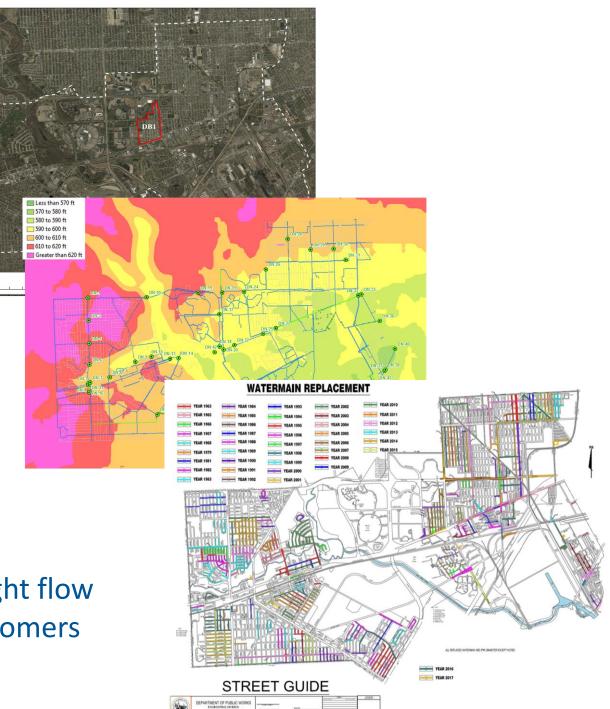
CITY OF DEARBORN



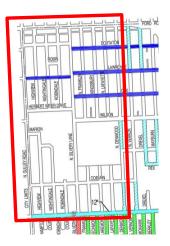
City of Dearborn

Using DMA Results

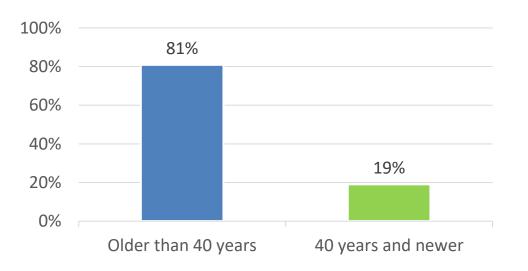
- Two to three week monitoring periods
- Flow balance yielded water losses (real and apparent)

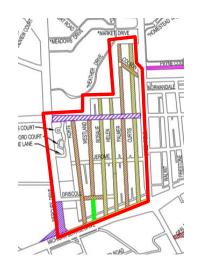


• Real and apparent Losses were calculated using Gallons/Connection/Day

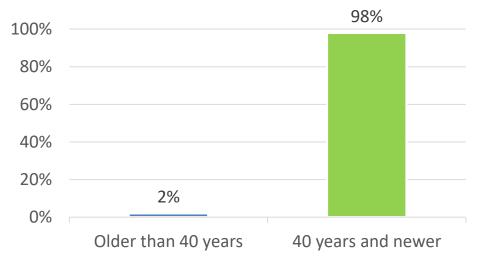


Selection of Dearborn DMAs


- High probability of isolation
- Areas representative of broader system
- Data available for extrapolation (e.g., pipe age, pressures)
- Minimal valve closures
- No DMA in commercial and industrial areas:
 - Impact of 24/7 operations on minimum night flow
 - Lack of redundancy in DMA for critical customers



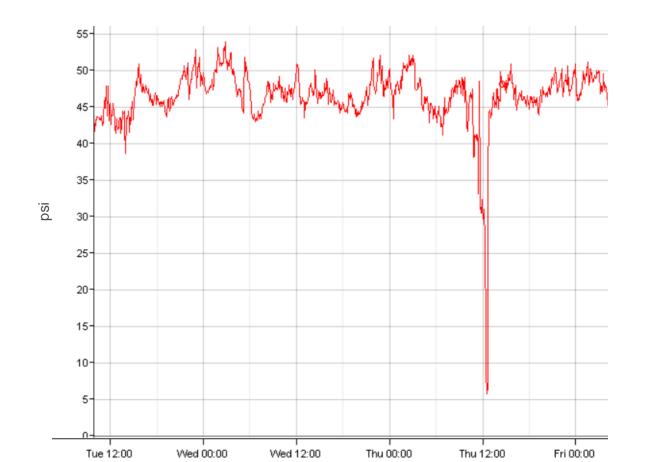
DMA Water Main Replacement Summary



DB2: Older / Lower Pressure

DB1: Newer / Higher Pressure

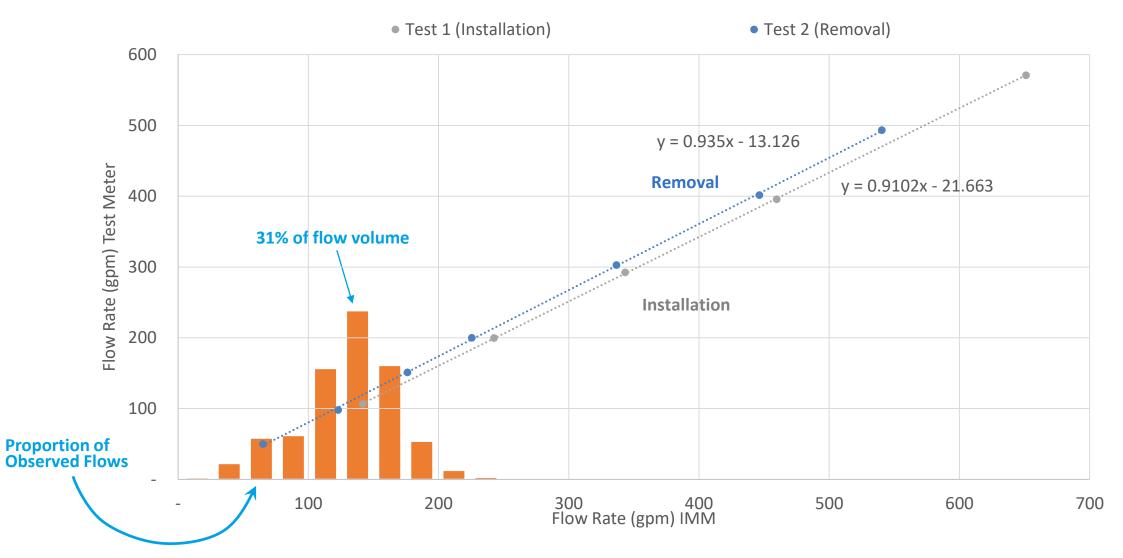
R,



Dearborn DMA: DB1

- Single insertion mag meter (IMM) installed 8/4/2018
- Dearborn installed new chamber to take advantage of newer section of pipe and ensure sufficient straight pipe up and downstream of meter
- IMM tested against a hydrant test meter to provide in-situ calibration
- Isolation achieved 8/30/2018
- Flows augmented over 3 days to build confidence in low flows
- After 14 days, second hydrant test
- Extra validation step: new meter installed for an additional 14 days

Isolating DMAs


- Significant effort involved to isolate and confirm
- E.g., identifying valves, working valves (water quality issues), repairing valves
- Implement pressure alarms and develop emergency response protocols

DB1: Meter 1: Hydrant Test #1 (Installation) vs Hydrant Test #2 (Removal)

DB1: Summary Results

Meter 1 data - typical usage period (14 days)

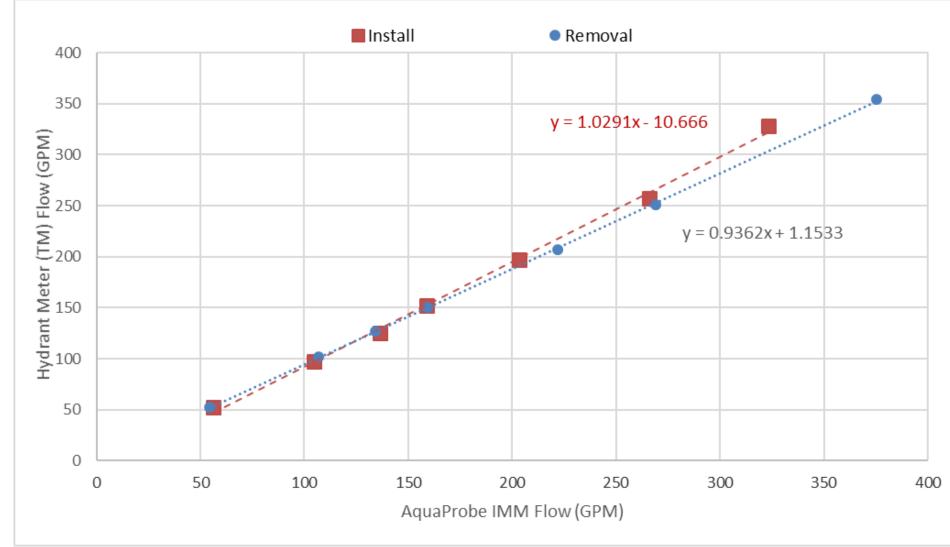
	DB1 Meter 1	Total Volume (Gallons)	Gallons Per Day
[1]	Raw IMM Between 10:00AM 8/30/2018 and 10:00AM 9/13/2018:	2,323,110	165,936
[2]	IMM Adjusted Between 10:00AM 8/30/2018 and 10:00AM 9/13/2018:	1,926,768	137,626
[3]	Retail Reads	1,714,977	122,498
[4]	Customer Metering Inaccuracies (2.01% x [3])	34,471	2,462
5]	Unauthorized Consumption (AWWA default) [0.25% x [2]	4,817	344
6]	Systematic Data Handling Errors (AWWA default) [0.25% x [3]	4,287	306
7]	Gallons per Connection* per Day Apparent Loss		4
8]	Net Real Loss	168,216	12,015
9]	Gallons per Connection* per Day Real Loss		15

* 805 Total connections

Meter 2 data - typical usage period (14 days)

	DB1 Meter 2	Total Volume (Gallons)	Gallons Per Day
[1]	IMM Raw Between 10:00 AM 9/19/2018 and 10:25 AM 10/3/2018	1,881,115	134,232
[2]	IMM Adjusted Between 10:00 AM 9/19/2018 and 10:25 AM 10/3/2018	1,849,810	131,998
[3]	Retail Reads	1,655,327	118,120
[4]	Customer Metering Inaccuracies (2.01% x [3])	33,272	2,374
[5]	Unauthorized Consumption (AWWA default) (0.25% x [2])	4,625	330
[6]	Systematic Data Handling Errors (AWWA default) (0.25% x [3])	4,138	295
[7]	Gallons per Connection* per Day Apparent Loss		4
[8]	Net Real Loss	152,448	10,878
[9]	Gallons per Connection* per Day Real Loss		14

* 805 Total connections


Dearborn DMA: DB2

- DMA planned with two meters
- Dearborn installed 20ft of new pipe and temporary 8" inline mag meter in southwest corner of the DMA (concern over tuberculation in existing pipe)
- IMM installed in gate well on eastern side of the DMA
- Isolation occurred on 10/4/2018 (large effort, incl. new gate valve)
- Initial monitoring shows flows moving in and out of DMA
- Moved to one meter (IMM) feed on 10/8

DB2 Hydrant Tests

Required estimate of consumption for houses in isolated area

DB2: Summary Results

Typical usage period (14 days)

	DMA DB2	Total Volume Gallons	Gallons Per Day
[1]	IMM Raw Between 10/08/18 11:30 and 10/22/18 11:30	3,195,695	228,264
[2]	IMM Adjusted Between 10/08/18 11:30 and 10/22/18 11:30	3,082,500	220,179
[3]	Retail Reads	2,670,994	190,785
[4]	Customer Metering Inaccuracies (2.04% x [3])	54,488	3,892
[5]	Unauthorized Consumption (AWWA default) (0.25% x [2])	7,706	550
[6]	Systematic Data Handling Errors (AWWA default) (0.25% x [3])	6,677	477
[7]	Gallons per Connection* per Day Apparent Loss		4
[8]	Net Real Loss	342,634	24,474
[9]	Gallons per Connection* per Day Real Loss		18

* 1,349 Total connections

Dearborn DMA Issues and Solutions

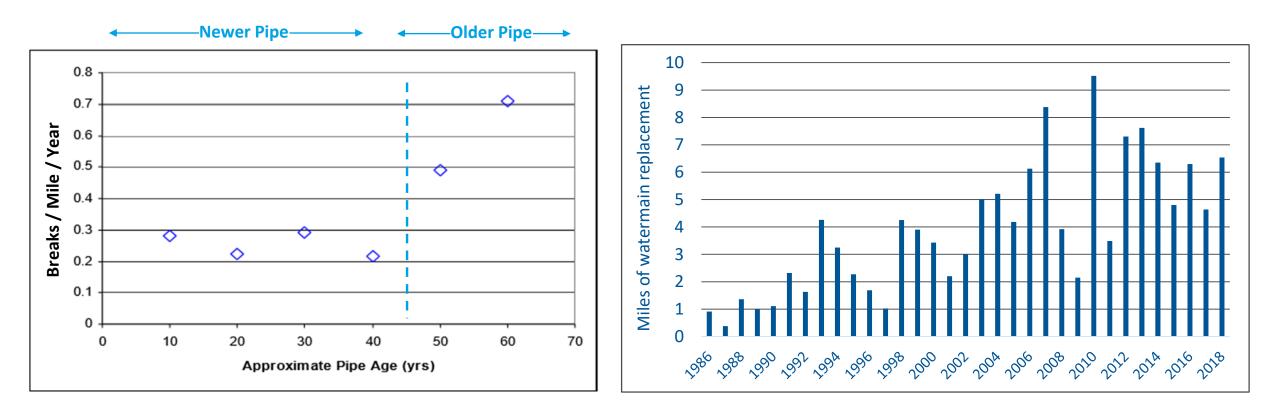
	ISSUE	SOLUTION
1	Insertion Mag Meters did not consistently test within the expected range on the test bench or in the field.	The hydrant test provides a means of comparing the IMM flows against a calibrated test meter in the field, from which a calibration curve can be generated. This is preferred to transferring bench test results and assumptions to the field.
2	There were customer connections which could not be shut off when conducting the hydrant test.	An estimate of customer use was removed from the flow monitored at the IMM.
3	After the 14-day test period in DB1, the IMM appeared to be slightly off-center and not fully parallel to the pipe where it was set initially.	A second hydrant test was conducted and a second meter was installed to re-check the flows over a second 14-day period.
4	The retail meters are normally read every three months.	Special meter recording runs were conducted on a daily basis (during weekdays).
5	Some meters only have a granularity of 100 cubic feet (CF).	Multiple days were used to calculate the retail volumes (14-days). Daily variation was typically 1-3%
6	During initial installation, the cellular signals sending the pressure and flow data were intermittent at best.	Semi-open (grated) manhole covers were installed to allow the signal to propagate.
7	In DB1, the second IMM meter measured zero flow during some night time periods.	The IMMs are not as reliable at measuring low flows as billing meters. Analysis was conducted on all the logged data, and a minimum flow value was assigned as a proxy for the inconsistent readings at the very low-flows. This adjustment represented less than 1% of the total flow volume.
8	In DB2 isolation proved difficult.	A near pressure zero test was conducted to make sure that two valves (which were seen to be passing during the pressure drop test) were tight.
9	Once DB2 was isolated, it became obvious that flow conditions were altering at different times of the day. In the early morning, there was reverse flow through the IMM	The second (metered) feed to the DMA was turned off and only positive flow were observed with only one feed

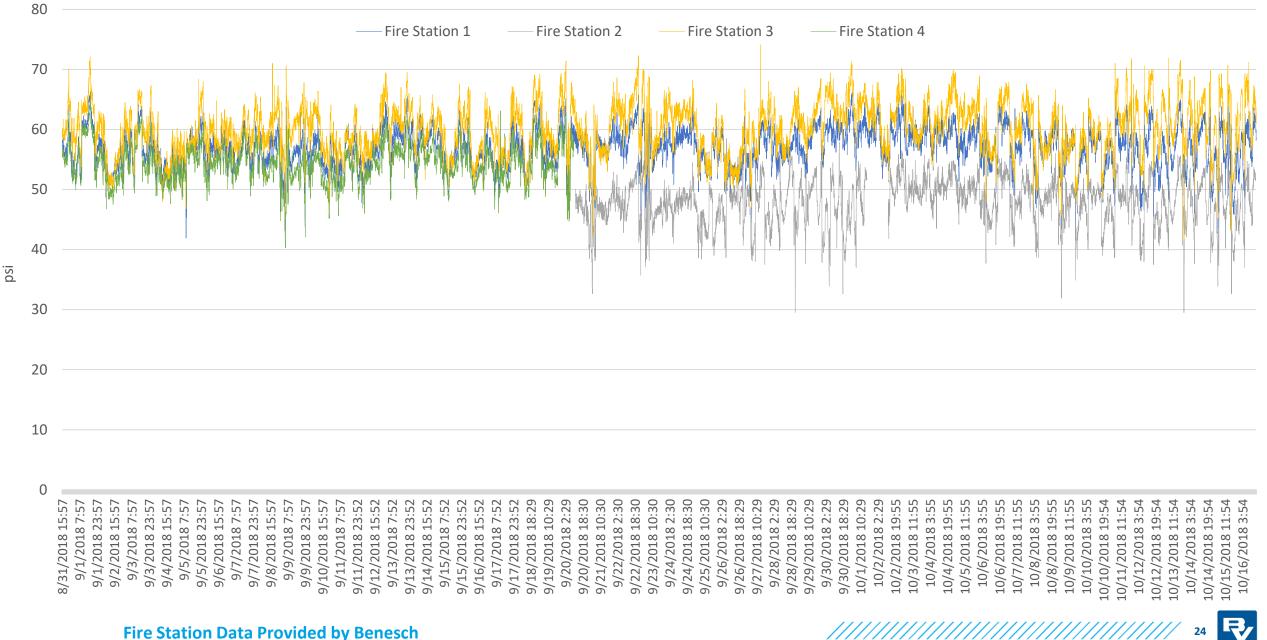
Dearborn DMA Extrapolation

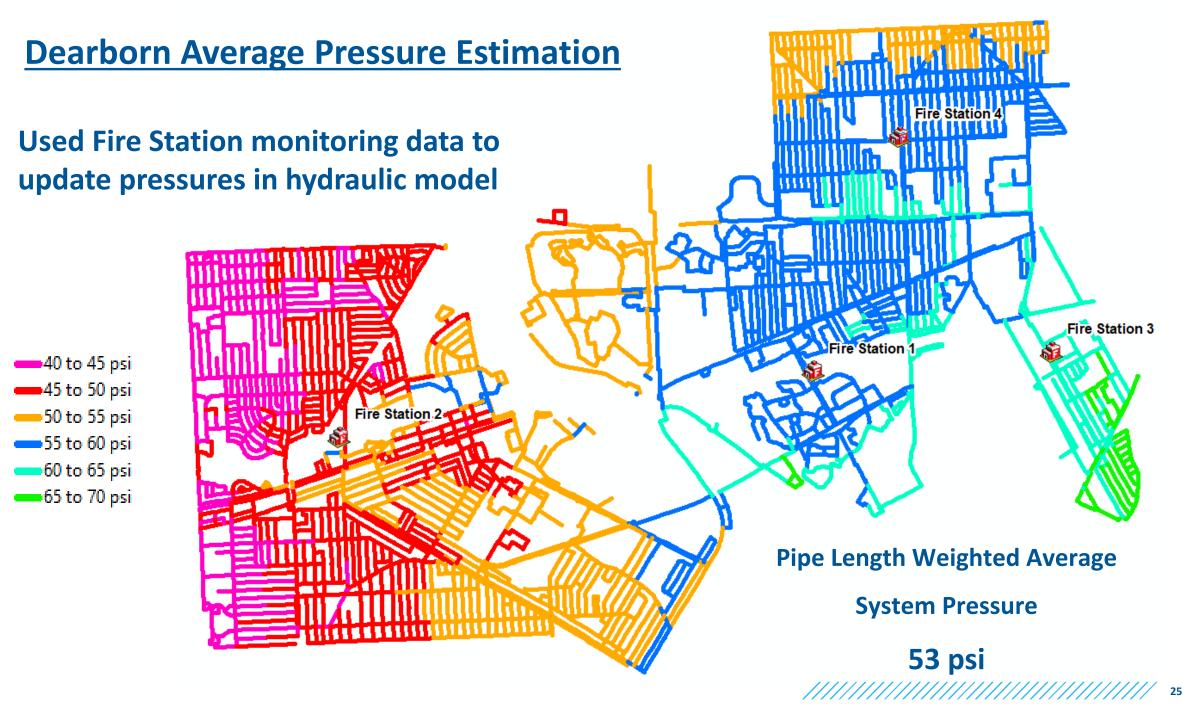
Key Extrapolation Factors (for Real Water Loss):

- Age of Pipe
- Pressure

Extrapolation Step: System Age



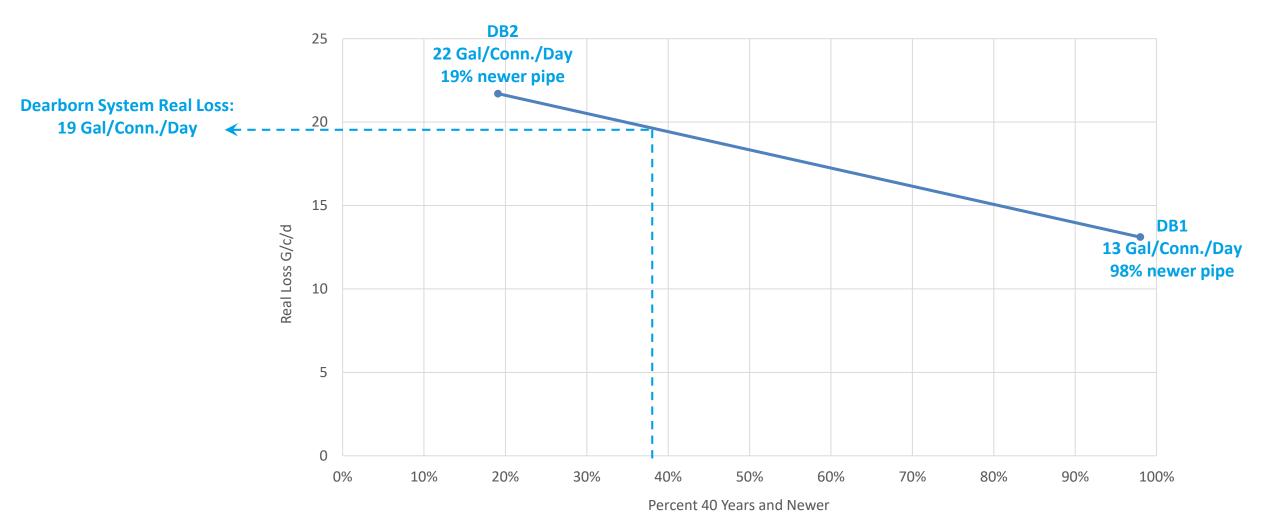

Figure 4: Variation of Number of Breaks with Pipe Age


Source: 2008 Master Plan (OHM)

Approximately 40% of Dearborn's system is less than 40 years old

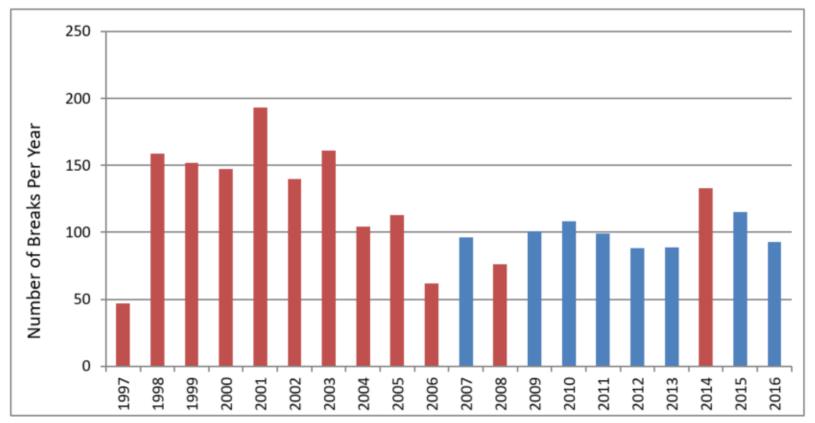
R,

System wide pressure monitoring



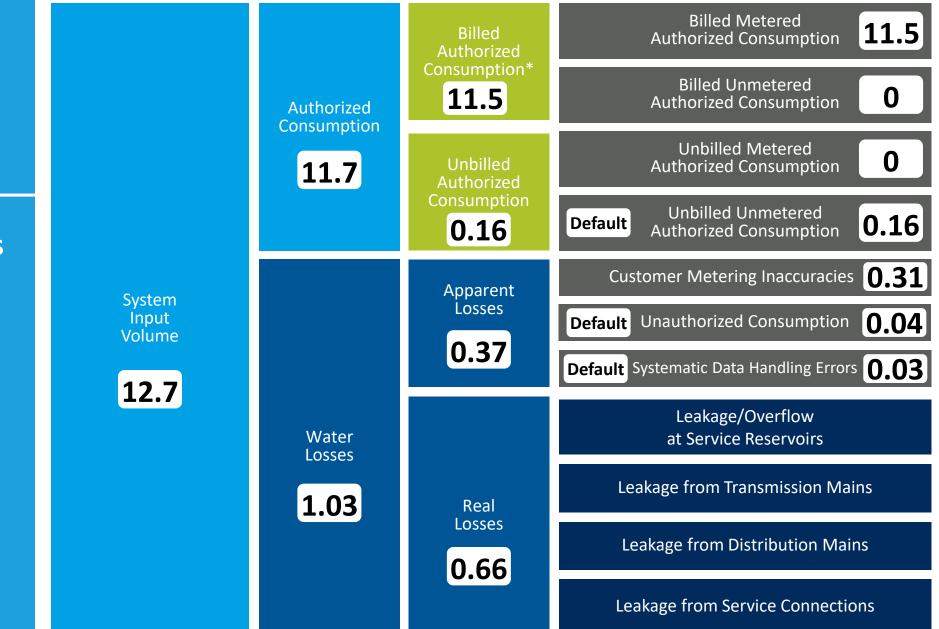
R/

Extrapolation Step 1: DMA Pressure Adjustment DB1 **DB2** 18 gpcd 14 gpcd ORD COUP 57 psi **44 psi Pipe Length Weighted Average System Pressure 53 psi** Real Loss in DB2 = Real Loss in DB1 = 22 gallons / connection / day 13 gallons / connection / day


Results in DMA real loss values normalized to average system pressure

Interpolate Pressure Adjusted Real Loss

R/

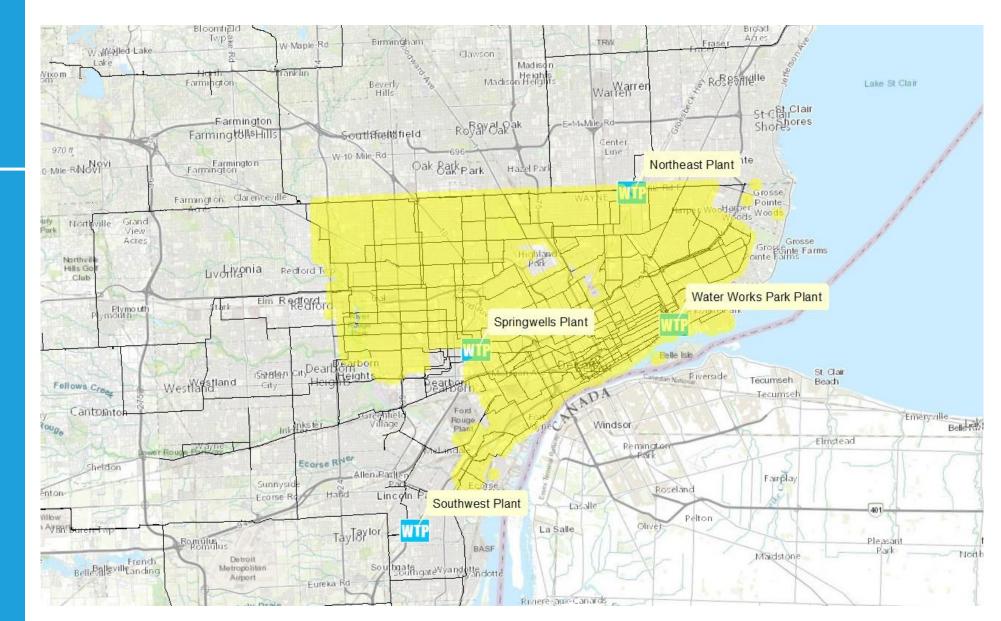

Value	Component	Source
99	Breaks / year	Dearborn Break Data - 10 year avg. (excluding highest and lowest)
24	Hours to respond and fix	
78	gpm leak rate	Water Research Foundation 4372a pressure adjsuted failure flow rates. Dearborn Breaks: 1% on <4", 89% on 6-10", 10% on 12" and above
11,077,560	Gallons / year	Calculated
30,349	Gallons /day	Calculated
32,566	Connections	Dearborn
0.9	Gallon / connection / day	Calculated

///

* Projected FY2020 Billed Authorized Consumption based on Oct 2015 – Sept 2018 including 5% reduction for base months

Water Balance

Average Day Values

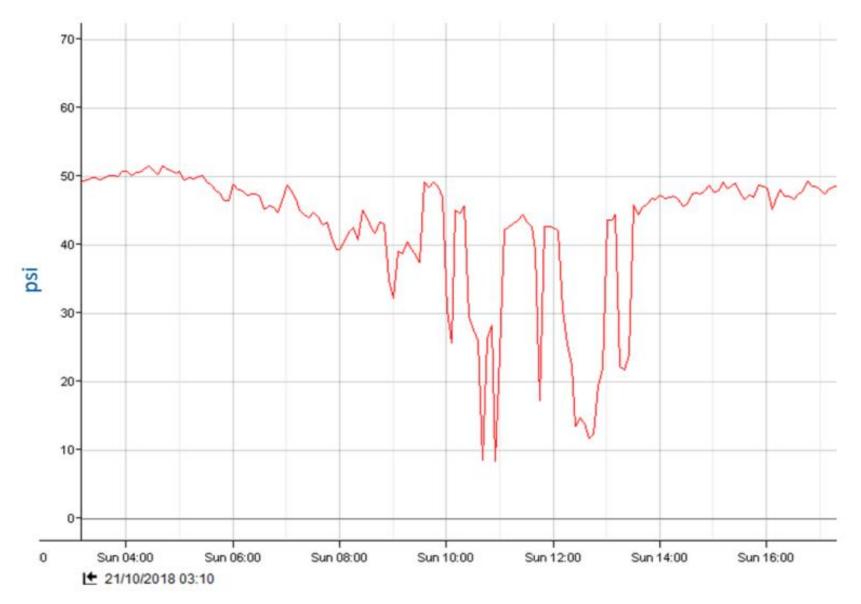

Dearborn Peaking Factors

METHOD	MAX DAY FACTOR	PEAK HOUR FACTOR
1a) Residential Peers (weight 69.5%)	1.65	2.45
1b) Non-Residential Peers (weight 30.5%)	1.32	1.67
1) Peers (Weighted Avg.)	1.55	2.21
2) WAMR Monthly Peak Comparison	1.89	2.55
Dearborn Peaking Factors Average of Method 1 and Method 2	1.72	2.38

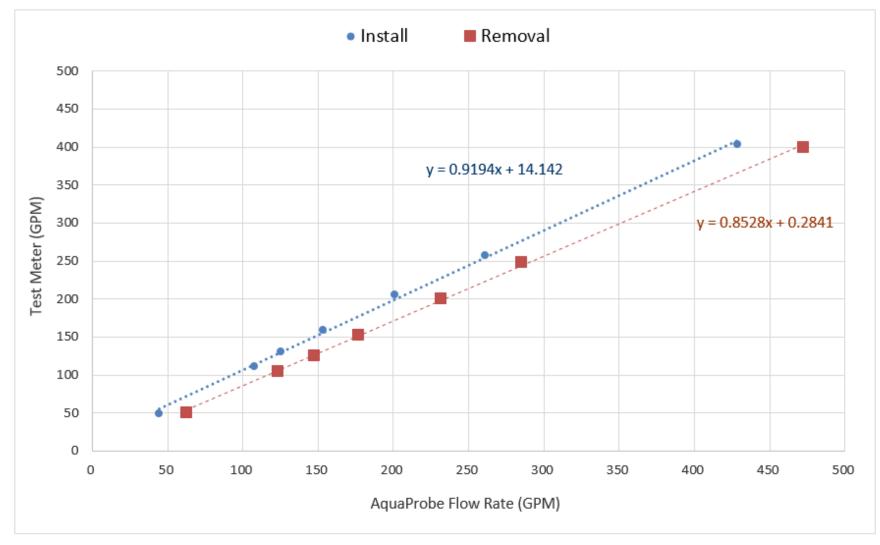
	AVG. DAY	MAX DAY	PEAK HOUR
FY2020 MGD	12.7	21.8	30.3

All values exclude operational buffer

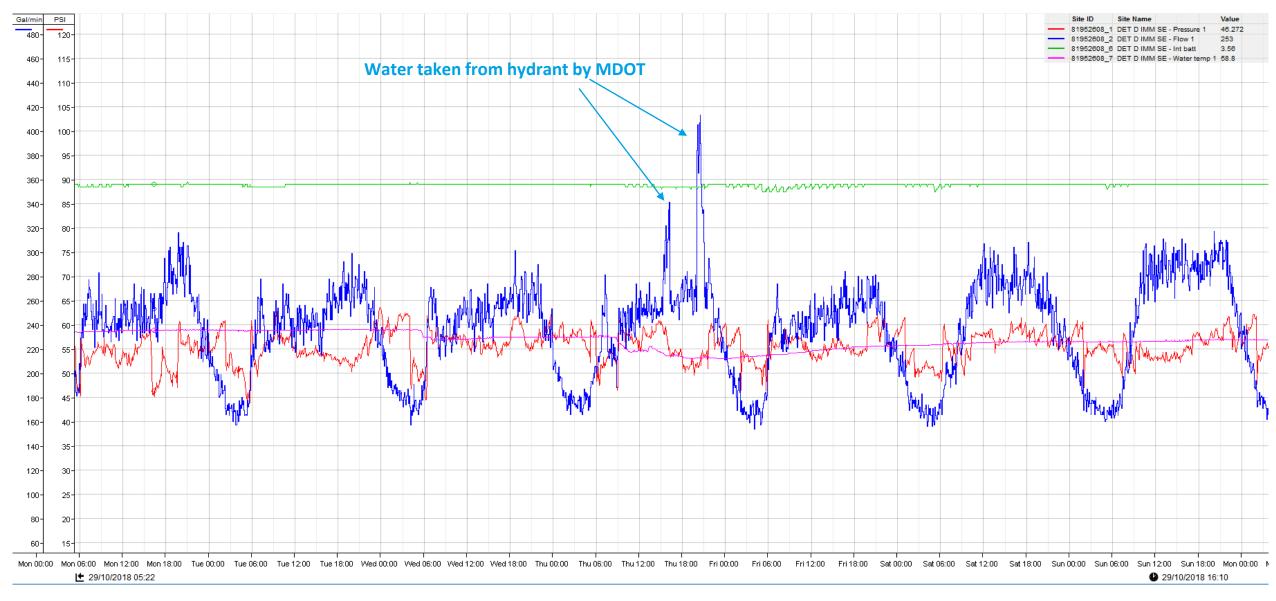
CITY OF DETROIT



Detroit DMA: DETD


- Two meters installed
- Two pressure monitors installed
- Isolation occurred on 10/21
- Significant effort required by Detroit to achieve isolation
- Moved to one meter feed on 10/26
- DMA monitored for 11 days
- ~1,500 Retail Connections

Pressure Drop Test: DET-D



Meter Test Comparison: DET-D

Proposed Approach: Average of Install and Removal Test

DET-D

R.

DET-D 11 days of DMA monitoring

	DET-D	Total Volume Gallons	Gallons Per Day
[1]	IMM Raw Volume Between 10/26/18 00:00 and 11/06/18 00:00	3,796,895	345,172
[2]	IMM Adjusted Vol.* Between 10/26/18 00:00 and 11/06/18 00:00	3,481,640	316,513
[3]	Consumption from Retail Reads**	1,994,956	181,360
[4]	Customer Metering Inaccuracies (2.32% x [3])	46,222	4,202
[5]	Unauthorized Consumption (AWWA default) (0.25% x [2])	8,704	791
[6]	Systematic Data Handling Errors (AWWA default) (0.25% x [3])	4,987	453
[7]	Gallons per Connection*** per Day Apparent Loss		4
[8]	Net Real Loss	1,426,770	129,706
[9]	Gallons per Connection*** per Day Real Loss		86

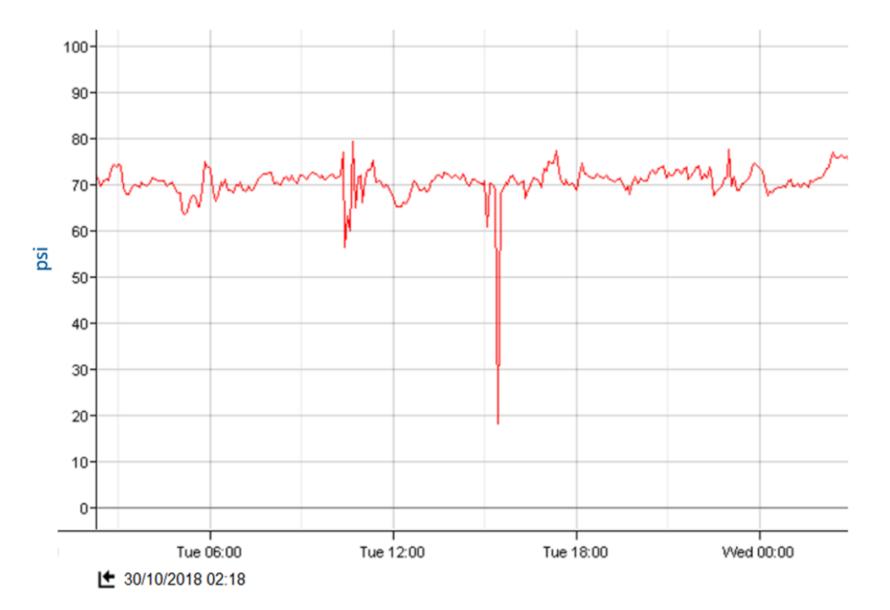
* Removes estimated volume from MDOT usage at hydrant (2,729 gallons)

** Includes estimated usage as provided by DWSD, and corrections to anomalies

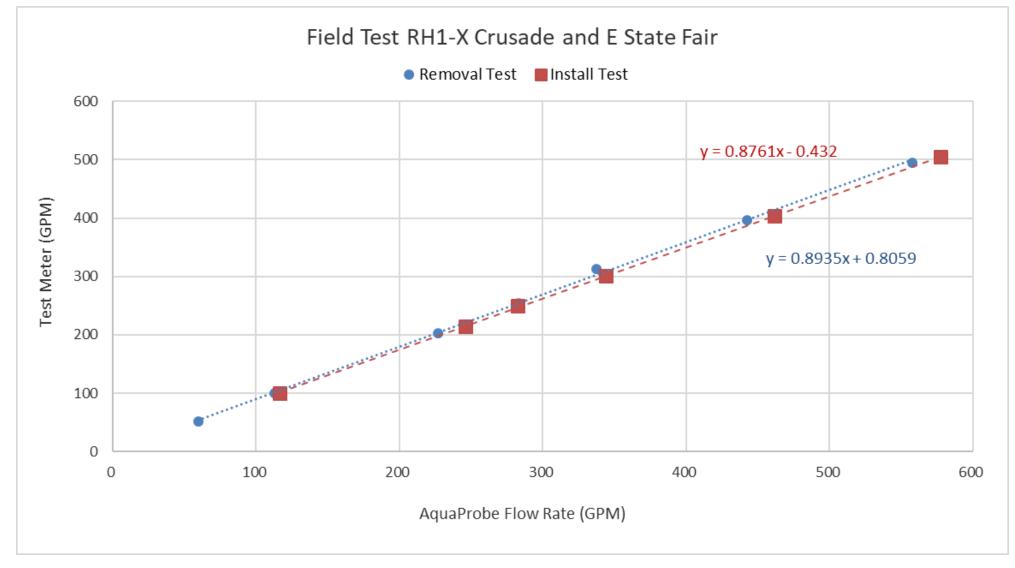
***Total number of accounts (including estimates) = 1,506


Estimated accounts with usage = 74

Estimated accounts with zero usage = 17


Average of Hydrant Test 1 and 2

Detroit DMA: RH1-X


- One insertion meter installed
- Two pressure monitors installed
- Isolation occurred on 10/30
- DMA monitored for 12 days
- ~1,900 Retail Connections

Pressure Drop Test: RH1-X

Meter Test Comparison: RH1-X

Proposed Approach: Average of Install and Removal Test

RH1-X

Accounting of leaks found during hydrant testing

- Leaks found during hydrant testing needed to be fixed before hydrant test could be completed
- Found one vacant flooding while onsite and corrected: 8.7 gpm for vacant flooding based on observed metered leak from other account in the DMA.
- 5/8" service line maximum capacity is approximately 20 gpm
- DWSD found service line leaks on abandoned school. Service shut off (confirm all lines found) Leak flow rate estimated by comparing difference between two hydrant tests

RH1-X

12 days DMA monitoring

[RH1-X	Total Volume Gallons	Gallons Per Day
[1]	IMM Raw Volume Between 10/31/18 00:00 and 11/12/18 00:00	5,507,975	458,998
[2a]	IMM Adjusted Vol. Between 10/31/18 00:00 and 11/12/18 00:00	4,876,687	406,391
[2b]	Estimated volume from leakage at 21.0 gpm	363,364	30,280
[2c]	Total Adjusted IMM Volume	5,240,051	436,671
[3]	Consumption from Retail Reads*	2,594,751	216,229
[4]	Customer Metering Inaccuracies (2.31% x [3])	59,890	4,991
[5]	Unauthorized Consumption (AWWA default) (0.25% x [2a])	12,192	1,016
[6]	Systematic Data Handling Errors (AWWA default) (0.25% x [3])	6,487	541
[7]	Gallons per Connection** per Day Apparent Loss		3
[8]	Net Real Loss	2,566,730	213,894
[9]	Gallons per Connection** per Day Real Loss		110

* Includes estimated usage as provided by DWSD, and corrections to anomalies

**Total number of accounts (including estimates) = 1,937

Estimated accounts with usage = 8

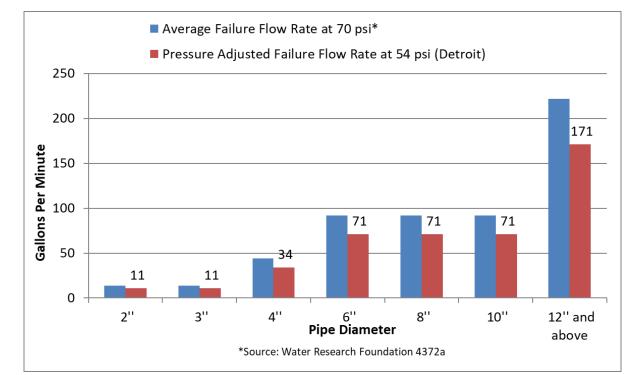
Estimated accounts with zero usage = 205

Assumptions:

Average of Hydrant Test 1 and 2 (no difference between tests)

Detroit DMAs: RL2 and NW

- Meters installed
- Pressure monitors installed
- Challenges in the field (RL2)
- DWSD concern over time / effort to achieve isolation in NW (3,000 retail connections)
- Currently no data available for these DMAs

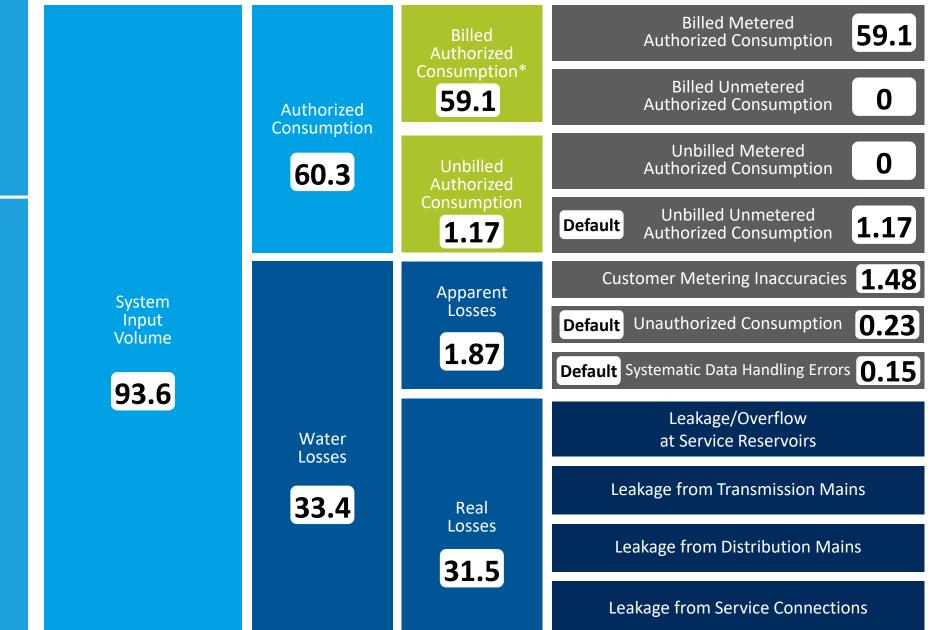


DWSD Issues / Concerns

- 1. Estimation of mains breaks repair time
- 2. Inclusion of 2015 data for NW DMA in Phase 2
- 3. Use of AECOM Leakage Investigation data:
 - North Rosedale Park: 6 gal./conn./day
 - Cornerstone Village: 29 gal./conn./day

Water Loss: Mains Breaks

Value	Component	Source
1,244	Breaks / year	DWSD Break Data - average of last three years (2014-2016)
96	Hours to respond and fix	DWSD provided KPI data, under review by B&V
78.4	gpm leak rate	Water Research Foundation 4372a pressure adjusted failure flow rates. DWSD Breaks: 92% on 6-10", 8% on 12" and above
561,457,133	Gallons / year	Calculated
1,538,239	Gallons /day	Calculated
309,928	Connections	DWSD
5.0	Gallon / connection / day	Calculated


Real Loss Calculations for Phase 2

				Pressure-	Gallons / Connection / Day			
DMA	DMA RL (gal.conn./day)	DMA PSI	DWSD System PSI	adjusted RL (gal./conn./day)	DMA Avg.	From Mains Breaks	Phase 2	Phase 1
DETD	86	46	54	101				
RH1X	110	70	54	85	97	5	102	106
NW*	106	55	54	104				
*DMA re	*DMA results from Benesch Study 2015; utilized as best available data for Phase 1 Real Loss (MGD				oss (MGD)	31.5	32.9	

309,928 connections

AWWA Water Balance: DWSD

* Projected FY2020 Billed Authorized Consumption based on Oct 2015 – Sept 2018 including 5% reduction for base months

Water Balance

Average Day Values

DWSD Phase1 Demands and Peaking Factors

- Scatter plots developed in Phase 1 to project to 900 mgd
- Update to Phase 2 Avg. Day and apply Peaking Factors

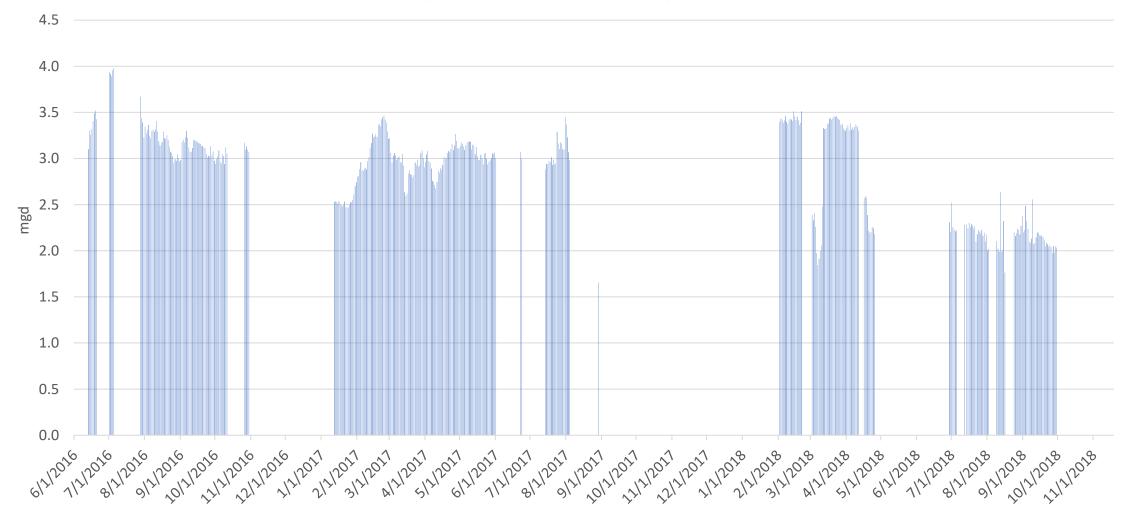
	AVG. DAY	MAX DAY	PEAK HOUR
FY2019 MGD (Phase 1)	98.1	120	141
Peaking Factors		1.22	1.44
FY2020 MGD (Phase 2)	93.4	114	135

CITY OF HIGHLAND PARK

City of Highland Park

ovember 2018

52


Highland Park

- Approx. 2,700 retail connections
- System had its own source of supply until 2012
- Currently supplied from GLWA system
- Currently 3 connections open; each is measured with an insertion meter, tracked in WAMR
- Daily, hourly, and 5-min data available
- Notable change in flow patterns in April 2018

Highland Park

Daily Data when all three meters operational

Highland Park

- Valves checked on multiple occasions and found to be as expected
- Meters pulled, calibrated and reinstalled in August 2018
- Reported leak detection and repair activity
- Current average flow rate: 2.18 mgd
- Apply peaking factors from Phase 1 to calculated max day and peak hour

	AVG. DAY	MAX DAY	PEAK HOUR
FY2019 MGD	3.07	3.94	4.03
Peaking Factors		1.28	1.31
FY2020 MGD	2.18	2.79	2.86

Other Phase 2 Tasks

GLWA Water Balance

2017 GLWA Water Balance

TOTAL VOLUMES ASSIGNED BY ENTITY	AVG. DAY (MGD)	MAX DAY (MGD)	PEAK HOUR (MGD)
WAMR / Wholesale	281	475	591
Dearborn	12.7	21.8	30.3
Detroit	93.6	114	135
Highland Park	2.18	2.79	2.86
Transmission	26.5	26.5	26.5
GLWA / CTA	37.4	39.5	
Adjusted System Pumpage (Total)	453	680	769

Water Treatment Plants

Water Treatment Plant Testing

- Plant testing underway along with planned rehab or new finished water metering
- Ultrasonic meter (Flexim) technology tested at four plants:
 - WWP available pumps tested 10/2
 - SWP available pumps tested 10/3
 - SPP tested 10/15
 - LHP tested 10/18
 - NE pending
 - Test data shared and reviewed by BV, not all pumps tested
 - No updates to WTP accuracy at this time
 - Phase 1 reduction of 5.8% of reported volume

Water Treatment Plant Metering

WTP	METERING RENOVATIONS STATUS	SCHEDULED COMPLETION DATE
Northeast	 Venturi Meters (VM) have been rehabilitated SCADA work completed Flow data is on Ovation 	Complete, pending acceptance testing (AT).
Southwest	 VM 4 & 5 Rehab is complete SCADA work underway VM 1,2, & 3 VM 3 complete VM 1 & 2 & SCADA work 	1/15/2019 3/30/2019
Springwells	 Three phases of equipment shutdown and rehab planned Phase 1 Phase 2 Phase 3 	12/03/18 + SCADA work and AT 1/25/19 + SCADA work and AT 3/25/19 + SCADA work and AT
Lake Huron		2021
Water Works Park		2021

Transmission Mains

Transmission Blow Off Investigation

GLWA Investigation Summary:

- Total GLWA 990 (395 tied to sewer)
- 395 valves investigated
- Seven discharge points estimated to be minimally leaking 0 5 gpm
- No significant losses from open blow offs found (Phase 1: 10 mgd)
- GLWA to continue investigation

Transmission Main Losses Evaluation

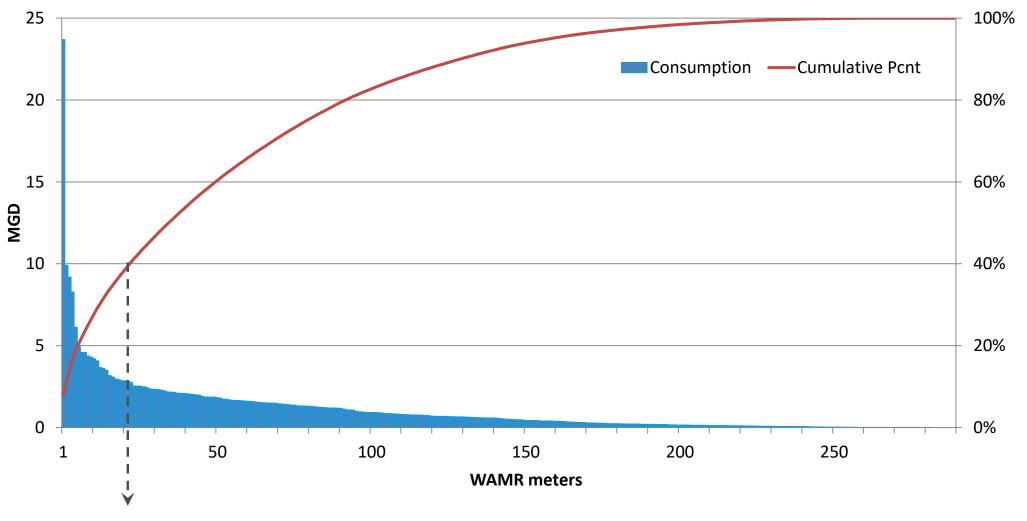
Phase 2 Investigation:

- Researched available literature
- Utilized available data and methodology from technical paper:
 - Age
 - Pressure
 - Miles of pipe
 - Number of breaks
- Concluded similar level of transmission main losses as Phase 1 (23.5 mgd)
- Recommend maintaining estimate of 26.5 mgd based on Phase 1
- Evaluate results of condition assessment on 14 Mile transmission mains

Master Metering

- Continued evaluation of options
- Dearborn:
 - Discussed master metering plan and segmentation of system
 - Redundancy discussion ongoing
- Detroit:
 - Master metering evaluation of complex Detroit system
 - Additional options being evaluated
- Highland Park:
 - Validation of existing metering ongoing

Wholesale Water Meter Audit



WAMR Meter Audit

- 290 WAMR meters (114 Mags, 89 Mech, 87 Differential Pressure)
- Phase 1: Reviewed testing and calibration; recommended flow verification
- GLWA is moving ahead with 50 Water Meter Upgrades (CON 285).
 - Meter sizing has been evaluated by BV and GLWA (31 downsizing)
- GLWA has replaced 23 meters since 1/1/2016
 - Three meters replaced in last three months (new mags)
- Prioritize flow testing of largest 20 volume meters (38% of volume)

WAMR Meter Evaluation

R/

70

~40% of volume from largest 20 WAMR meters

WAMR Meter Audit

Alternative to Flow Verification:

- Conduct screening level water audit
- Balance wholesale volumes against retail sales
- Use AWWA Water Audit principles
- Water Audit Workshop being planned by GLWA Best Practices Workgroup

Long Term Water Audit

Long Term Water Audit

- Identify and prioritize Data Gaps
- Improve AWWA Data Validity Score:
 - Finished water metering
 - Wholesale meters prioritized for testing
 - Retail meter testing
- AWWA M36 (Water Audit Manual): "It will take three to six years for most water systems to obtain a mature level of validity in their water audit approach".

Questions....Discussion....Feedback