Transmission System Integrity Plan

August 8, 2018

Presentation Outline

PART 1:

Transmission System Background

PART 2:

Proactive Approach to Pipeline Management

PART 3:

Transmission System Integrity Plan

PART 4:

Open Dialogue

Transmission System Background

Part 1

GLWA's Transmission Main Inventory

800 miles of Transmission Main

- Concrete Pipe: 500 miles
 - Largest user of Prestressed Concrete Cylinder Pipe (PCCP) in USA, 435 miles
 - Tendency to fail in more catastrophic mode
- Metallic Pipe: 300 miles
 - Tendency to fail from corrosion and age
- Diameter
 - Range: 6 to 120 inches
 - Average: 48 inches
- Age
 - Range: 3 to 167 years
 - Average: 70 years

Program Vision

By implementing a proactive **Transmission System Integrity Program**, GLWA will:

- Increase Reliability of Transmission System to Meet Levels of Service
- Limit Failures on High Consequence Transmission Mains
- Reduce Failures on all Transmission Mains

Proactive Approach to Pipeline Management

Part 2

Buried Pipeline Management

- Water sector has moved past "bury-and-forget"
- Innovative, reliable solutions available for proactive management
- Condition assessment and targeted repair reduces failure and its impact
- Data drives focused investment decisions in infrastructure renewal

Major Findings of a Decade of Proactive Pipe Management

- Increased pipeline reliability
- Risk-prioritized assessment allows for targeted renewal
- No silver bullet
- Pipe management approaches and technologies are rapidly evolving

Major Findings of a Decade of Proactive Pipe Management

Peer Utility Data - Cumulative Transmission Main Failures

What are Peer Utilities Doing?

DEPARTMENT OF PUBLIC WORKS

What are Peer Utilities Doing? (Assessment Only)

Peer Utility	2016 Cost	2017 Cost	Transmission Main Inventory (Miles)	% Pipe Assessed Annually (Average)
WSSC	\$6.7M	\$5.6M	235	9%
City of Baltimore	N/A	\$1.4M	200	8%
Miami Dade WASD	\$1.1M	\$2.3M	300	10%
Louisville Water Company	\$1.3M	\$3.9M	200	9%

Assessment and Renewal Program Goals

- Address highest risk concrete pipe first
 - 48-inch 14 Mile Road (Assessment Q3/Q4 of 2018)
 - 120-inch Huron to Imlay
 - 96-inch Imlay to North Service Center
 - 84-inch / 72-inch North Service Center to Franklin
- Address all high risk pipe based on a defined timeframe
- Continue to address remaining transmission mains following a schedule optimized by risk and budget

Transmission System Integrity Plan

Part 3

TRANSMISSION SYSTEM INTEGRITY PROGRAM CYCLE

Update Risk Prioritization
With Actual Condition
Data & Reprioritize

Risk Assessment (Prioritization)

Continuous Monitoring

Pipeline Inspection (Data Collection)

Pipeline Renewal

Structural / Condition Analysis

Pipeline Prioritization – Risk Based Approach

RISK = PROBABILITY X CONSEQUENCE

How is Pipeline Risk Determined?

Factors Impacting the Probability of a Pipe Failing

Factors Impacting the Consequence of a Pipe Failing

Transmission System Risk Results

Risk used to inform and prioritize:

- Assessment
- Renewal
- Monitoring
- Maintenance
- Capital Investment

Transmission Main Integrity Program Objectives

Pipeline Risk Management

Budget Optimization (Business Case)

Best-In-Class
Transmission System
Management

What Does it Take to Be Best-in-Class?

10 Key Ingredients

- 1. Integrated Operational Excellence
- Coordination

 (w/ member partners, internal stakeholders, contracted companies)
- 3. Public Relations and Outreach
- 4. Clearly Defined Team Amongst Different Groups
- 5. Total Pipeline Management (Address all pipeline features & integrate with other GLWA work)

- 6. Emergency Preparedness
- 7. Remain Opportunistic
- 8. <u>Innovation</u> (technologies, data management, process, dynamic risk model)
- 9. Understand Limitations of Innovative Approaches
- 10. <u>Boots on the Ground</u> (maximize inspected pipe)

Condition Assessment Technology Selection

PIPELINE RISK LOW HIGH **INSPECTION & MONITORING TECHNIQUES** Electromagnetic (Metallic) Thickness Measurements **Eddy Current / Enhanced Magnetic Flux Leakage Pressure Monitoring Corrosivity Survey Test Pits with Wall** Electromagnetic (PCCP and RCP) **AFO Monitoring** Leak Detection INSPECTION DATA RESOLUTION **INSPECTION DATA RELIABILITY INSPECTION COST**

Condition Assessment Technology Selection

Technology	Unit Cost (\$/mi)	Risk Tier 1	Risk Tier 2	Risk Tier 3	Risk Tier 4
Risk / Break Analysis	\$250				
Pressure Monitoring	\$1,000				
Leak Detection	\$30,000				
Test Pits	\$25,000				
Electromagnetic	\$100,000				
Magnetic Flux Leakage	\$135,000				
Acoustic Fiber Optic Monitoring	\$135,000				

Getting it Done Takes a Dedicated Staff

A best-in-class program requires:

- Dedicated technical staff (internal / external)
- Operations crews dedicated to the program
- Timely response for repairs
- Internal flexibility as the program progresses

Keys to Success

- ✓ Foster strong relationship between operations, engineering, and asset management
- ✓ Define and adhere to schedule
- ✓ Technical team with practical operational knowledge
- ✓ Resilient to staff turnover
- ✓ Quantify and communicate program success
- ✓ Strong but flexible processes
- ✓ Be prepared for emergencies

Summary

- State-of-art, scientifically defensible approach to pipeline risk management
- Apply data to drive decision making processes to manage pipeline risk
 - Make GLWA's Transmission System Integrity Program industry best

Open Dialogue

Part 4

